HOMEWORK 2 (18.314, FALL 2006)

Definition. Let $[n]=\{1,2, \ldots, n\}$, and let $\left[\begin{array}{l}n \\ k\end{array}\right]$ be a set of all k-subsets. For every $A \subset[n]$, define $\operatorname{inv}(A)=|\{(i, j): 1 \leq i<j \leq n, i \notin A, j \in A\}|$. Let

$$
\binom{n}{k}_{q}=\sum_{A \in\left[\begin{array}{l}
n \\
k
\end{array}\right]} q^{\operatorname{inv}(A)}
$$

be the q-binomial coefficients.
Definition. Let $(i)_{q}=\left(q^{i}-1\right) /(q-1)$, and $(n!)_{q}=(1)_{q}(2)_{q} \cdots(n)_{q}$.

1) Draw the first 6 lines of the q-Pascal triangle containing polynomials $\binom{n}{k}_{q}$. Find a recurrence relation for these polynomials. Prove by induction that

$$
\frac{(n!)_{q}}{(k!)_{q} \cdot(n-k)!_{q}}
$$

satisfy these recurrence relations.
2) Prove by induction that $\binom{n}{k}_{q}$ satisfy the same recurrence relations. Conclude that

$$
\binom{n}{k}_{q}=\frac{(n!)_{q}}{(k!)_{q} \cdot(n-k)!_{q}}
$$

3) Recall the bijection between $\left[\begin{array}{l}n \\ k\end{array}\right]$ and grid paths. Show that the number of inversions in a k-subset of $[n]$ corresponds to the area under the grid path. Find another proof of 2).
4) Compute the number of permutations in S_{n} with exactly 2 inversions.
5) a) Compute the expected number of inversions in a permutation $\sigma \in S_{n}$.
b) Compute the expected number of inversions in k-subsets $A \in\left[\begin{array}{l}n \\ k\end{array}\right]$.
6) Let A be a random k-subset of [1024]. Denote by p_{k} the probability that A does not contain any power of 2 . Find a formula for p_{k}. Find the smallest k such that $p_{k}<3 / 4$.

This Homework is due Wednesday Sep 27 at 14:05 am.
Remember the collaboration policy: groups of at most four, write names on the solutions, only discussions are allowed, no copying.

