Convex Polytopes
Q: $r<\mathbb{Z}^{2}$ region is $-c$

$$
\begin{aligned}
& \text { we get } h: \partial r \rightarrow \mathbb{Z} \\
& \text { L } T \text {-tillable er domino } \Rightarrow h \text { is } \\
& \text { D } \exists r \text { extend } h \text { into } r \\
& {\left[\begin{array}{l}
{[-1,(a)} \\
0
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \text { well legined. }
\end{aligned}
$$

Dy T, T^{\prime} - domino
tilings $\overline{\text { wésug } T \leqslant T \text { if } h(x) \leqslant h^{\prime}(x)}$
h, h^{\prime} - corresp $k x \in T$ heoght guactions

日 $\square \&_{+2}^{-1} 母_{-2}$

$$
\text { Then } \exists \text { domino tiling } T
$$

$$
\begin{aligned}
& T \leq \text { all other } T^{\prime}, T^{\prime} \text { - doming } \text { tiling }^{T} \\
& \mathbb{\pi} \\
& h_{T}=\min _{\text {all } T^{\prime}} h_{T 1} \sqrt{\leftarrow \text { Iglobal min }}
\end{aligned}
$$

$\Rightarrow \exists!$ local min $=$ globe
prog of Y his all $T \rightarrow$ global min因

$$
\begin{aligned}
& \text { Q complexity of } \\
& \text { hurston's o eg? } \\
& \text { The } \& O^{*}\left(\operatorname{aro}_{a}^{n} a_{n}\right) \\
& \frac{\text { huston' } A C g}{\text { Input! } T} \\
& \text { output: yes: in } \exists \text { domino } \\
& \text { wiling vt }
\end{aligned}
$$

No! otherwise

$$
\begin{aligned}
& \text { Th (P-sheffer -Tossy) } \\
& \text {-algorilhn } O(p \log p) \\
& p=|\partial \Gamma| \\
& F=\langle a, b\rangle
\end{aligned}
$$

FIGURE 14.3. Yoronoi diagram
Dey Del triong 4 dual to Voronoi diogram
$L\left(v_{i}, v_{i}\right) \in \partial Q_{v} \rightarrow B_{i}$ and B_{j} have convavi\} conmon edge
pey
$B_{i} \leftarrow$ set of pts
in \mathbb{R}^{2} clocest to v_{i}

L(Pslon. Lriterion) triong T is a Del triany
\Leftrightarrow erery cincumcircle $\left.\begin{array}{l}\text { is empty } \\ \text { (around } v_{i v i} k \in T \text {) }\end{array}\right]$

$\frac{\text { Main Lemma }}{\text { every } T \mathbb{Z}}$ Del triong

D check ${\underset{c i n c l e s ~}{c o s}}^{\text {cinch er }}$
if NOT empty moke a flip

Proof surfacesteocal max
$\Rightarrow S$ is convex at all edges

cong $V \subset \mathbb{R}^{3}$ convex position
Then all triong. are glip-ronn.
False in higher dim

