Convex Polytopes
Dehn iuvariant elementary moves $2 \leftrightarrow 1$

$$
\begin{aligned}
& \text { Th (Sydler) } P, Q \text {-convex polytopes } \\
& \text { vol }(P)=\operatorname{vol}(Q) \quad \text { in } 1 / 2^{3} \\
& \rightarrow \varphi_{f}(P)=\varphi_{f}(Q) \quad \forall \text { kogangunction } f \\
& \text { Then } \quad P \sim Q
\end{aligned}
$$

Open problem
Does this hold $S S^{3}, H^{3}$? vol, Dehn inv t
simpler open problem $\Delta_{1}, \Delta_{2} \subset S s^{3}, \operatorname{vol} \Delta_{1}=\operatorname{vol} \Delta_{2}$ and all dihedral angles are rational $\in \pi \mathbb{Q} \Rightarrow \Delta_{1} \sim \Delta_{2}$???

SPHERICAL TETRAHEDRA WITH RATIONAL VOLUME, AND SPHERICAL PYTHAGOREAN TRIPLES

ALEXANDER KOLPAKOV AND SINAI ROBINS

$$
\begin{aligned}
& \longrightarrow(p, q, r, s)=\left(\frac{5}{18} \pi, \frac{2}{9} \pi, \frac{13}{18} \pi, \frac{11}{18} \pi\right) \\
& \longrightarrow \operatorname{VOl} T=\pi^{2} / 162 \\
& \left.\longrightarrow \ell_{q}, \ell_{r}, \ell_{s}\right)=\left(\frac{5}{18} \pi, \frac{2}{9} \pi, \frac{5}{18} \pi, \frac{7}{18} \pi\right) \\
& \longrightarrow \text { VO }
\end{aligned}
$$

$$
>\quad \cos p \cdot \cos q+\cos r=0
$$

SPHERICAL TETRAHEDRA WITH RATIONAL VOLUME, AND SPHERICAL PYTHAGOREAN TRIPLES

ALEXANDER KOLPAKOV AND SINAI ROBINS

$$
\begin{aligned}
& (p, q, r, s)=\left(\frac{5}{18} \pi, \frac{2}{9} \pi, \frac{13}{18} \pi, \frac{11}{18} \pi\right) \\
& \left(\ell_{p}, \ell_{q}, \ell_{r}, \ell_{s}\right)=\left(\frac{5}{18} \pi, \frac{2}{9} \pi, \frac{5}{18} \pi, \frac{7}{18} \pi\right) \\
& \left.\operatorname{vol} T=\pi^{2} / 162 .\right\}
\end{aligned}
$$

Coxeter tetrahedra in \mathbb{S}^{3}

Order 48

Monge maps
Des $P, Q \subset \mathbb{R}^{d}$ - convex polytopes
$\varphi: P \rightarrow Q \leftarrow$ Monge map if

1) φ is $P L$
2) φ is continuous
3) φ is vol-preserving 41

Ih $\operatorname{vol}(P)=\operatorname{vol}(Q) \Rightarrow \exists \varphi: P \rightarrow Q$ s.t. φ is Monye map

What is Optimal Transport?

- The problem was originally studied by Gaspard Monge in the 18 'th century.

Gaspard Monge 1746-1818

Le mémoire sur les déblais et les remblais
(The note on land excavation and infill)

$$
\begin{aligned}
& \text { p.og of thm } \quad l=2 \\
& p<\mathbb{R}^{2} \\
& n-\text { oon }
\end{aligned}
$$

$$
\frac{P \bowtie \Delta, \quad Q \bowtie D^{\prime} \Rightarrow P \infty Q}{\text { Q: in } \mathbb{R}^{3} ?}
$$

Figure 18.2. Polygons P, Q with fans F, G, the union fan $C=\widetilde{C}$, and the continuous PL-map $\varphi: P \rightarrow Q$.

Proog of $7 h$ Take $\varphi: P \rightarrow Q$ groa L

$$
\begin{aligned}
& a_{i} \in \mathbb{R}+ \\
& P=\omega \Delta_{i} \\
& Q=\omega \Delta_{i}^{\prime}
\end{aligned}
$$

$$
\varphi: \Delta_{i} \rightarrow \Delta_{i}^{\prime}
$$

$\operatorname{vol} \Delta \Delta_{i}^{\prime}=a_{i} \operatorname{vol} \Delta_{i}$

Kuperberg

$$
\begin{aligned}
& \Gamma \text { - connecbed groph } \\
& \left(\alpha_{i} \alpha_{j}^{\prime}\right) \rightarrow\left(\alpha_{i}^{\prime} \alpha_{j}^{\prime}\right) \\
& \alpha_{i}+\alpha_{j}=\alpha_{i}^{\prime}+\alpha_{j}^{\prime}
\end{aligned}
$$

Th $M, N \leftarrow P L$-manifolds

$$
M \simeq N \notin P L \text {-homeom }
$$

$$
\text { vol } M=\operatorname{vol} N
$$

Example of Monge Map

$\underline{Q} \leftarrow$ plone porbition polytope

Th2 \# int points in $P_{a} s=\#$ int poiuts in $\theta_{\text {at }}$
$b_{1} \bar{a} \in \mathbb{N}^{n}$

$$
\begin{aligned}
& \begin{array}{c}
\text { \# int } p-1 s \text { in } P_{\bar{a} l} \\
\text { |l }
\end{array} \\
& \#-11-Q_{\bar{a} B}=\# \text { pairs } \\
& \text { Th RSK (knuth, 1990) } \\
& \square \leftrightarrow(\sqrt[\beta]{ } \quad \underset{\operatorname{SSYT}(\lambda, \bar{a}) \operatorname{SSY} T(\lambda, \bar{b})}{\infty}
\end{aligned}
$$

Now: explicit construction of Mange map $\Phi: P_{\bar{a} l} \rightarrow Q_{\bar{a} t}$
Important: $\bar{\Phi}=R S K$

$$
\begin{aligned}
& \bar{a}=(545) \\
& b=(725)
\end{aligned}
$$

$$
\begin{aligned}
& 5 \rightarrow(3+6-5)=4 \\
& M_{s} \rightarrow M \rightarrow \square \rightarrow \square \square
\end{aligned}
$$

$L \Phi^{-1}: Q_{\bar{a} t} \rightarrow P_{\bar{\alpha} \bar{l}}-P L$, vol-pres (8ii ond continuous
Prop: Φ does NOT depend on the order of squaves removed.

commatotivity of
min-mox meps

