Convex Polytopes

$$
\begin{aligned}
& \text { Der (elementary more) } \\
& P=L \Delta \Delta_{\text {elem move }}^{i}=L \Delta_{i}^{\prime} \\
& \longleftrightarrow \\
& \left\{\begin{array}{l}
\prime \prime \text { all } \Delta_{i}=0_{i}^{\prime} \\
\text { except } \\
2 \leftrightarrow 1 " 1 \\
\hline
\end{array}\right.
\end{aligned}
$$

Figure 17.1. Examples of elementary moves on dissections.
Th [Ludwig-Reitzner, cro06] (P-conrex) $\forall P \subset \mathbb{R}^{d}$ Every 2 simplicial dissections are connected by a finite seq of elem moves.

$$
d=2
$$

Figure 17.2. A sequence of elementary moves on dissections: $\mathcal{D} \leftrightarrow \mathcal{D}^{\prime}$.
Rem geom. verscon of tepol.thms

$$
\begin{aligned}
& \text { Dep } \varphi:\left\{\underset{\mathbb{R}^{d}}{\{\widehat{~}}\right\} \rightarrow \mathbb{R} \\
& \varphi \text {-voluation } \quad \varphi\left(\Delta_{1}\right)+\varphi\left(\Delta_{2}\right)=\varphi(\Delta) \\
& \varphi \text { - symmetnc } \quad \Delta \leftrightarrow \Delta_{1} 山 \Delta_{2} \\
& \text { if } \varphi(g \Delta)=\varphi(\Delta) \\
& y \leftarrow r_{\text {igidid notion }} \\
& \{\text { parallel transl. } \\
& \{\text { rototion, roplection }
\end{aligned}
$$

Prop $\varphi \in$ sym valuation
$\Rightarrow \varphi$ extends to all convex $P \subset \mathbb{R}^{d}$

$$
\left.\begin{array}{rl}
\Delta p=L & \Delta i \\
\varphi(P) & =\Delta \Delta_{i}^{\prime} \\
& =\sum \varphi(\Delta i) \\
& \sum(\Delta \vdots)
\end{array}\right\} \log \frac{L \cdot R}{t h m}
$$

$\left.\begin{array}{ll}\text { Def } & f: \mathbb{R} \rightarrow \mathbb{R} \\ \text { 1) } & f-a d d i t i v e\end{array}\right\} \begin{aligned} & \text { Kogin } \\ & \text { function }\end{aligned}$
2) $f(\pi)=0$

De $\quad \forall f \in$ Koan function $\quad(d=3$

$$
\begin{aligned}
& \varphi=\varphi_{f}(4)=\sum_{e \in \Delta} e_{e} \cdot f\left(\partial_{e}\right) \\
& \leqslant \varphi \in \text { sym valuation } \\
& D \text { sym } V \text { valuation } \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \leftrightarrow \Delta_{1} \cup \Delta_{2} \\
& -\varphi(\Delta)+\varphi\left(\Delta_{1}\right)+\varphi\left(\Delta_{2}\right) \\
& =\frac{e_{e} f(\alpha)+e_{e} f(\pi-\alpha)}{+e_{e^{\prime}} f(\beta)+l_{e} f(\pi-\beta)} \\
& \begin{array}{l}
=e_{e} f(\pi)+e_{e} f(\pi)=0 \\
\operatorname{cor} \varphi_{f}(P):=\sum_{e \in P} e_{e} f\left(\partial_{e}\right) t \text { well } \\
\text { degind }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
P=\sum_{i=1}^{N} \Delta_{i} \\
P(P)=\sum_{i=1}^{N} \varphi\left(\Delta_{i}\right) \leftarrow \text { well }
\end{array} \\
& =\sum_{i=1}^{N} \sum_{e \in \Delta_{i}} \operatorname{ee} f\left(\gamma_{e}\right)= \\
& \underbrace{\varphi_{f}(P)=\sum_{e \in E(P)} e_{e} f(\gamma e)}_{\text {Dehn invorigat }} \forall f \leqslant \begin{array}{c}
\text { kagan } \\
\text { function } \\
\longrightarrow
\end{array}
\end{aligned}
$$

Cor

$$
\alpha:=\arccos \frac{1}{3}
$$

Exe \exists Kagan guuction

$$
\left.\begin{array}{l}
f(\alpha s)=s \\
f(\pi s)=0
\end{array}\right\} \forall s \in \mathbb{Q} \quad \alpha / \pi \notin \mathbb{R}
$$

Now: proog of $C-R$

Pef 2 -move

$\Delta-\Delta-\Delta \rightarrow \Delta-\Delta \Delta$
Figure 17.4. Making a 2-move using four elementary moves.

L' Every 2 triangulations of convex polygon

Figure 17.5. From two star triangulations to one.
Proof of $L-R$ them for $d=2$ (by induction on \# polygons in
polyhedral subdivision.

Kpolygonin subdivision Q
\{stor triang of $Q\}$
claim all polygonal
star wiony are coun
u/ elem. moves

$$
\{[\text { induction on } \neq \text { polygons }] \leftarrow n\}
$$

BASE $n=1$
$n \equiv 2$

Figure 17.6. Cutting a decomposition by a line in the induction step.

$$
\text { STEP } \quad n>2
$$

$$
\text { Obs : \#polygons in } P>\text { \#polygous }
$$

in pl and

$$
Q^{\prime} \omega Q^{\prime \prime} \hookleftarrow Q=Q^{\prime} \cup Q^{\prime \prime}
$$

$i^{\prime} n p^{\prime \prime}$

$$
d=3 L 1 P-\text { convex polytope }
$$

\exists star triong \leftarrow all Δ have

D $v \in V(P)$
a common vontex
cone over all foces. \& triungulat ollfoces回

Dey/ Construction $\quad P \subset \mathbb{R}^{d}, v \in V(P)$

$$
P \subset \mathbb{R}^{d+1}
$$

$\angle 2 \in L 1$ all stor triang of $P \subset \mathbb{R}^{3}$ are connected by olen moves

$h: V \rightarrow \mathbb{R}_{+}$

$$
h^{\prime}: v \rightarrow \mathbb{R}_{+}
$$

$$
h_{1}^{\prime} h^{\prime} \in M \text { a generic }
$$

$$
h \rightarrow h^{\prime}
$$ n. gunctions

