L1 (IUM, Spring)
Convex Polytopes
Q. What ore invorionts of convex polytupe $\overrightarrow{\text { LI }}$ Scissor - congrueuce
Def $P: Q \subset \mathbb{R}^{d}, P \sim Q$ if
子

$$
\begin{aligned}
& P=\sum_{i=1}^{N} P_{i} \quad \text { s.t. } \overline{P i \simeq Q_{i}} \\
& Q=\sum_{i=1}^{M_{1}} Q_{i} \\
& \text { rup to rigid rotions } 1 \text { gruenke }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Th (Bolyai-Gerwéen, } 1830 \text {) } \\
& P, Q<\mathbb{R}^{2} \text { convex polytopes } \\
& \text { areu }(P)=\text { oveo }(Q) \Rightarrow P \sim Q
\end{aligned}
$$

Hilbert Third problem
Q \sim ? $\Delta \rightarrow$ th (Dekn, 1903) $\Delta \times \Delta$

$$
\begin{aligned}
& \text { L' } \Gamma \leftarrow \text { discrete group acting } \\
& \text { on } \mathbb{R}^{d} \text { sit } \operatorname{si} Q \in \text { fundamental } \\
& \text { regions } \Rightarrow P \sim Q
\end{aligned}
$$

$\leq 2 \sim \leftarrow$ equic.robation
D $\quad P \sim Q, \quad Q \sim R \Rightarrow P \sim R$

$$
\begin{aligned}
& =U Q_{j}^{\prime} \\
& =U\left(Q_{i} \cap Q_{j}^{\prime}\right)
\end{aligned}
$$

Prog ey thi ($B-6$)
$P=\Delta \Delta i$
0) triany

1) triangles \rightarrow poral.
2) poral \rightarrow squores
3) squoves \rightarrow one $b i g \leq q$.

Figure 15．1．Converting a triangle into a parallelogram．

$\geqslant 2^{2}$

Figure 15．2．Converting a parallelogram into another parallelogram．

$$
\xrightarrow{\text { 占 }}
$$

$$
>\sqrt{\text { arrear }}
$$

$$
\begin{aligned}
& \Rightarrow P \sim \square \square_{i} \\
& U \square_{i} \rightarrow \square
\end{aligned}
$$

\mathbb{Z}^{2}

Figure 15.3. Converting two squares into a bigger one
$\frac{\overline{P \sim} \sim Q}{\frac{\square}{\sqrt{\text { Que }}} \text { Is B-G true for spheriacal }}$

Th B-G hols for

$$
\frac{S^{2}, H^{2}}{\operatorname{areu}(P)=2 ?-\frac{e c o s y}{e x c}}
$$

Dy $p<\mathbb{R}^{3} \in$ convex poly to $p e$
$P \leftarrow$ fortunate if $\exists c_{i} \in Q_{+}$

$$
\begin{aligned}
& c_{1} \alpha_{1}+\ldots+c_{n} \alpha_{n}=\pi \\
& E=\left\{e_{i}\right\}+\text { dyes y } P
\end{aligned}, \quad \begin{aligned}
& \alpha_{i}=\text { dihedral } \\
& \text { angel at ed ye }
\end{aligned}
$$

$$
\begin{aligned}
& E X P=A \rightarrow \text { gortarote } \\
& P=\Delta \leftrightarrow \text { not fortunate } \\
& \begin{array}{l}
\begin{array}{l}
\alpha=2 \arcsin \frac{1}{\sqrt{3}} \\
\frac{T h}{}(\text { Bricoud }, 18905)
\end{array} E x \notin \mathbb{c}
\end{array} \\
& P \text { - gortunate } \Leftarrow P \sim \square .
\end{aligned}
$$

Pes $P \subset \mathbb{R}^{3}$ convex polytop.

$$
\begin{aligned}
& \tilde{\sigma}(P)=\sum_{i=1}^{n} \alpha_{i} \\
& \alpha_{i}=<\text { at } e_{i} \\
& P \sim Q \quad \text { les subdiv } \\
& \left.\begin{array}{ll}
U^{\prime \prime} P_{i} \quad \ddot{U} Q_{i} & \sum:=\sum \sigma\left(P_{i}\right) \\
P_{i} \simeq Q_{i} & =\sum \sigma\left(Q_{i}\right)
\end{array}\right] \\
& \text { (double couting) } \\
& \Sigma=\sum_{i=1}^{N} \sum_{e \in E} \frac{\alpha_{i}(e)}{\left.\leftarrow 2 \text { all edyesin } P_{i}\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& Q=\widehat{\square I} \Rightarrow \alpha_{i}=\frac{\pi}{2} \\
& \sum \in \mathbb{Q} \cdot \pi \\
& \bar{\Sigma}=\sum_{i=1}^{n} \frac{k_{s}}{n} \alpha_{s} \quad+M \pi \\
& d_{i n} \text { ongle } \therefore p
\end{aligned}
$$

$$
\mathbb{Q}^{\pi} \frac{e_{e} \cdot \frac{2 \pi}{e_{e} \cdot \pi}}{}
$$

French proof

$$
\Sigma:=\sum e_{e} \otimes_{\mathbb{R}_{e}} \alpha_{e}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \mathscr{G (P _ { i })} \Theta \sum_{i=1}^{N} G\left(Q_{i}\right. \\
& \tilde{\sigma}\left(P_{i}\right):=\sum_{u \in P_{i}} \prod_{u} \alpha_{i} \alpha_{i}(u) ~ R^{\lambda} \pi
\end{aligned}
$$

Obs $R \subset \mathbb{R}^{D}<\operatorname{deg}$ ined oner \mathbb{K} ond $R \neq \varnothing \Rightarrow R$ hos a rotiond poiat
\Rightarrow back to rationol case.
\underline{Q}

$$
\Delta \stackrel{?}{\sim} \Delta+\Delta \text { sydder }
$$

