QUIZ 5 (MATH 61, SPRING 2017)

Your Name:

UCLA id:

Math 61 Section:

Date:

The rules:

This is a multiple choice quiz. You must circle only correct answers with an ink pen.
Every correct answer is scored positively, every false answer negatively.
You are allowed to use only this paper and pen/pencil. No calculators.
No books, no notebooks, no phones, no laptops. You MUST write your name.

Points: (10 per correct answer)

Question 1. A Hamiltonian cycle in $K_{8,8}$ has this many edges:

8 $\begin{array}{llll}16 & 32 & 64 & 256\end{array}$ such cycle does not exist none of these

Question 2. Of the following graphs, which are isomorphic?

none of these
\mathbf{A} and \mathbf{B}
\mathbf{A} and \mathbf{C}
B and \mathbf{C}
\mathbf{A}, \mathbf{B} and \mathbf{C}

Question 3. The complete graph K_{5} contains subgraphs isomorphic to the following:

O_{4}	P_{4}	K_{4}	K_{5}	C_{4}	C_{5}	$K_{2,3}$	$K_{3,3}$

Important: circle all that apply!

Question 4. Which of the following graphs have exactly 6 edges?
$\begin{array}{cllllllllll}P_{5} & P_{6} & P_{7} & O_{6} & C_{4} & C_{5} & C_{6} & C_{7} & K_{4} & K_{5} & K_{6}\end{array}$

Important: circle all that apply!

Question 5. There exist two connected non-isomorphic graphs with the same score.

True False Hamilton proved this cannot be determined Outside the scope of Math 61

