QUIZ 4 (MATH 61, SPRING 2017)

Your Name:

\qquad

UCLA id: \qquad

Math 61 Section:

Date:

The rules:

This is a multiple choice quiz. You must circle only correct answers with an ink pen.
Every correct answer is scored positively, every false answer negatively.
You are allowed to use only this paper and pen/pencil. No calculators.
No books, no notebooks, no web access. You MUST write your name.

Points: (10 per correct answer)

Question 1. Suppose sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=0, a_{2}=-2$, and $a_{n+1}=a_{n}+a_{n-1}$ for all $n \geq 1$. Then a_{n} is equal to:
$2(1-n) \quad-1+(-1)^{n} \quad-2 F_{n-1} \quad-2 F_{n} \quad-2 F_{n+1} \quad$ none of these
You can use the fact that $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8, F_{7}=13$, etc.

Question 2. Once the LHRR is solved, it can be verified
by induction by contradiction by recursion by double counting

Question 3. The LHRR $a_{n+2}=a_{n-1}-a_{n-2}-a_{n-4}$ has this many initial values:

| 2 | 3 | 4 | 5 | 6 | 7 | none of these |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Question 4. Which of the following hold?
disconnected graphs cannot be isomorphic all complete graphs are isomorphic number of edges in a graph determines its degree sequence none of these

Question 5. The Handshake Theorem was proved in class
by induction by contradiction by recursion by double counting

