QUIZ 4 (MATH 61, SPRING 2017)

Your Name: _____

UCLA id:

Math 61 Section:

Date:

The rules:

This is a multiple choice quiz. You must circle **only correct** answers with an **ink pen**. Every correct answer is scored positively, every false answer negatively. You are allowed to use only this paper and pen/pencil. No calculators. No books, no notebooks, no web access. You MUST write your name.

Points: (10 per correct answer)

Question 1. Suppose sequence $\{a_n\}$ is defined by $a_1 = 0$, $a_2 = -2$, and $a_{n+1} = a_n + a_{n-1}$ for all $n \ge 1$. Then a_n is equal to:

$$2(1-n)$$
 $-1+(-1)^n$ $-2F_{n-1}$ $-2F_n$ $-2F_{n+1}$ none of these

You can use the fact that $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8, F_7 = 13$, etc.

Question 2. Once the LHRR is solved, it can be verified

by in	nductio	n ł	oy contrad	liction	by recu	rsion	by double counting
\mathbf{Questi}	on 3.	The LHR.	$R a_{n+2} =$	$a_{n-1} - a_n$	$-2 - a_{n-4}$ has	as this r	nany initial values:
	2	3	4	5	6	7	none of these
	-	9	-	0	-	•	

Question 4. Which of the following hold?

disconnected graphs cannot be isomorphic all complete graphs are isomorphic number of edges in a graph determines its degree sequence none of these

Question 5. The Handshake Theorem was proved in class

by induction by contra-	diction by recursion	by double counting
-------------------------	----------------------	--------------------