MIDTERM 2 (MATH 61, SPRING 2017)

Your Name:

\qquad

UCLA id: \qquad

Math 61 Section:

Date:

The rules:

You MUST simplify completely and BOX all answers with an INK PEN.
You are allowed to use only this paper and pen/pencil. No calculators.
No books, no notebooks, no phones, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught violating the rules get automatic 10% score deduction.

Points:

2
3
4
5

Total:
(out of 100)

Problem 1. (15 points)
Solve the following LHRR: $a_{n+1}=5 a_{n}-6 a_{n-1}, a_{1}=9, a_{2}=20$.

Problem 2. (20 points)
Find the number of subgraphs of G isomorphic to H, where
a) $G=C_{12}, H=P_{5}$.
b) $G=K_{9,9}, H=C_{6}$.
c) $G=K_{9,9}, H=C_{7}$.
d) $G=H_{3}$ (the 3-cube), $H=C_{4}$.
e) $G=H_{3}$ (the 3-cube), $H=P_{4}$.

Problem 3. (20 points)
For each of these sequences, either draw a simple graph with this score (degree sequence), or explain why there is no such graph.
a) $(3,3,3,1,1,1)$
b) $(4,4,4,1,1,1)$
c) $(5,5,5,3,2,1)$
d) $(4,4, \ldots, 4) \leftarrow 16$ numbers.
e) $(3,3,3,3,2,2,2,2)$

Problem 4. (15 points)

Decide whether the following pairs of graphs on 8 vertices are isomorphic or non-isomorphic.
a)

b)

Important: In case of isomorphism, you must present a bijection. In case non-isomorphism, you must present an argument.

Problem 5. (30 points, 2 points each) TRUE or FALSE?
Circle correct answers with ink. No explanation is required or will be considered.

T $\quad \mathbf{F}$ (1) The hypercube graph H_{4} contains an Eulerian circuit.
T F (2) The hypercube graph H_{4} contains a Hamiltonian cycle.
T F (3) A subgraph of a connected graph is always connected.
T F (4) A subgraph of a disconnected graph is always disconnected.
$\mathbf{T} \quad \mathbf{F}$ (5) The sum of degrees of $K_{\ell, \ell}$ is ℓ^{2}.
T $\quad \mathbf{F}$ (6) The sum of degrees of a simple graph on $n \geq 3$ vertices is $\leq n^{2}-1$.
T F (7) Computing the number of walks of given length in a graph can be done efficiently.
T F (8) Deciding whether a graph has Hamiltonian cycle can be done efficiently.
T $\quad \mathbf{F} \quad(9)$ The number of (shortest) grid walks $(0,0) \rightarrow(5,5)$ which do not go through $(1,3),(3,4),(4,1),(1,5)$ is >100.

T $\quad \mathbf{F}$ (10) Graph H is a subgraph of G. Graph H contains a Hamiltonian cycle. Then G contains a Hamiltonian cycle.

T F (11) Graph H is a subgraph of G. Graph G contains a Hamiltonian cycle. Then H contains a Hamiltonian cycle.

T F (12) Graph $K_{50,50}$ contains a subgraph isomorphic to K_{10}.
T \quad F (13) Graph $K_{50,50}$ contains a subgraph isomorphic to $K_{10,10}$.
T $\quad \mathbf{F}$ (14) The number of walks $1 \rightarrow 1$ of length k in a graph G on n vertices can be computed via matrix $\left(A_{G}\right)^{n}$.

T F (15) Isomorphic graphs have the same number of Eulerian circuits.

