MIDTERM 1 (MATH 61, SPRING 2017)

Your Name:

\qquad

UCLA id: \qquad

Math 61 Section:

Date:

The rules:

You MUST simplify completely and BOX all answers with an INK PEN.
You are allowed to use only this paper and pen/pencil. No calculators.
No books, no notebooks, no web access. You MUST write your name and UCLA id.
Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught violating the rules get automatic 10% score deduction.

Problem 1. (20 points)
Compute the probability that 4 -subset A of $\{1,2, \ldots, 10\}$ satisfies:
a) A has no odd numbers,
b) A has at least one number ≤ 3,
c) A contains 1 but not 7 .
d) the smallest number in A is divisible by 3

Problem 2. (20 points)
Let $X=\mathbb{N}=\{0,1,2, \ldots\}$ be the set of all non-negative integers. For each of the following functions $f: X \rightarrow X$ decide whether they are injective, surjective, bijective:
a) $f(x)=x+1$
b) $f(x)=x^{2}-1$
c) $f(x)=2 x$
d) $f(x)=\left(x^{2}+2 x\right) /(x+2)$

Problem 3. (15 points)
Let $a_{n}=1111 \cdots 1$ (n ones). Suppose a_{k} is divisible by 97 . Use induction to show that $a_{k \cdot n}=0 \bmod 97$, for all $n \geq 1$.

Problem 4. (15 points)
Find closed formulas for the following sequences :
a) $4,4,6,8,12,18,28,44,70,112, \ldots$
b) $a_{1}=1, a_{n+1}=a_{n} \cdot\binom{n+1}{2}$
c) $a_{1}=1, a_{2}=1, a_{n+1}=a_{n-1}-a_{n}$ for $n \geq 2$.

Note: you can express a_{n} in terms of Fibonacci numbers F_{n}.

Problem 5. (30 points, 2 points each) TRUE or FALSE?
Circle correct answers with ink. No explanation is required or will be considered.
$\mathbf{T} \quad \mathbf{F}$ (1) The number of functions from $\{A, B, C, D\}$ to $\{1,2,3\}$ is equal to 4^{3}.
T $\quad \mathbf{F}$ (2) The sequence $1,3 / 2,5 / 3,7 / 6,9 / 8, \ldots$ is increasing.
T \mathbf{F} (3) The sequence $-1,-2,-3,-4, \ldots$ is non-increasing.
T F (4) There are 4 anagrams of the word MAMA.
T F (5) There are infinitely many Fibonacci numbers which are divisible by 3.
T $\quad \mathbf{F}$ (6) The number of permutations of $\{1,2,3,4,5\}$ is smaller than 123.
T $\quad \mathbf{F} \quad(7)$ The number of 3 -permutations of $\{1,2,3,4,5,6\}$ is equal to $\binom{6}{3}$.
T $\quad \mathbf{F}$ (8) The number of 3 -subsets of $\{1,2,3,4\}$ is equal to 4 .
T $\quad \mathbf{F}$ (9) The number of permutations of $\{1,2, \ldots, n\}$ which have n preceding $n-1$ (not necessarily immediately) is equal to $n!/ 2$

T $\quad \mathbf{F} \quad(10)$ For every $A, B \subset\{1,2, \ldots, 12\}$ we have $|A \cap B|<|A \cup B|$.
T F (11) For all $n \geq 1$, we have

$$
\binom{2 n}{0}+\binom{2 n}{2}+\binom{2 n}{4}+\ldots+\binom{2 n}{2 n}=2^{2 n-1}
$$

T $\quad \mathbf{F}$ (12) The number of grid walks from $(0,0)$ to $(10,10)$ going through $(3,7)$ is equal to $\binom{10}{3}^{2}$.

T F (13) The number of grid walks from $(0,0)$ to $(10,10)$ avoiding $(10,0)$ and $(0,10)$ is equal to $\frac{1}{2}\binom{20}{10}$.

T F (14) The number of anagrams of MISSISSIPPI which begin with M is greater than the number of anagrams which begin with S .

T F (15) The following parabolas are drawn in the plane:

$$
y=x^{2}-n^{2} x-n^{3}, \quad n=1, \ldots, 12
$$

Then the regions of the plane separated by these parabolas can be colored with two colors in such a way that no two adjacent regions have the same color.

