${\bf MIDTERM~2~(MATH~61,~SPRING~2017)}$

Your Name:	
UCLA id:	
Math 61 Sec	tion:
Date:	

The rules:

You MUST simplify completely and BOX all answers with an **INK PEN**. You are allowed to use only this paper and pen/pencil. No calculators. No books, no notebooks, no phones, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught violating the rules get automatic 10% score deduction.

Points:	
1	
2	
3	
4	
5	
Total:	(out of 100)

Problem 1. (15 points)

Solve the following LHRR: $a_{n+1} = 5a_n - 6a_{n-1}$, $a_1 = 9$, $a_2 = 20$.

Solution:

characteristic polynomial:
$$x^2 = 5x - 6 \Rightarrow x_1 = 2, x_2 = 3$$

We have:
$$a_n = A \cdot 2^n + B \cdot 3^n$$

Plug in
$$a_1$$
 and a_2 we get $A = \frac{7}{2}, B = \frac{2}{3}$

Problem 2. (20 points)

Find the number of subgraphs of G isomorphic to H, where

a) $G = C_{12}, H = P_5.$

Answer: 12

b) $G = K_{9,9}, H = C_6.$ Answer: $\binom{9}{3}^2 \times 6$ Hint: First choose $K_{3,3}$, then there are 6 C_6 in it

c) $G = K_{9,9}, H = C_7.$

Answer: 0

d) $G = H_3$ (the 3-cube), $H = C_4$.

Answer: 6 (only the 6 faces of the cube count)

e) $G = H_3$ (the 3-cube), $H = P_4$.

Answer: 48 (Fix the central edge of P_4 : There are 12 different central edges for P_4 , each of them could induce $4 P_4$)

Problem 3. (20 points)

For each of these sequences, either draw a simple graph with this score (degree sequence), or explain why there is no such graph.

a) (3,3,3,1,1,1)

Exist: Just draw a triangle and 3 extra vertices (one to one) connecting to each vertex of the triangle.

b) (4,4,4,1,1,1)

Not Exist: sum of degree is odd.

c) (5,5,5,3,2,1)

Not Exist: sum of degree is odd.

d) $(4,4,\ldots,4) \leftarrow 16$ numbers.

Exist: You can draw 2 copies of $K_{4,4}$

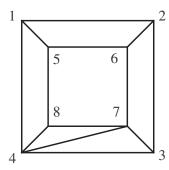
e) (3,3,3,3,2,2,2,2)

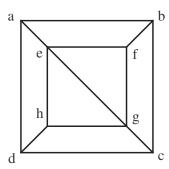
Exist: You can draw a C_8 and add 2 chords

Problem 4. (15 points)

Decide whether the following pairs of graphs on 8 vertices are isomorphic or non-isomorphic.

a)

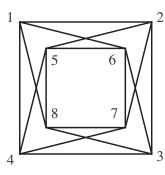


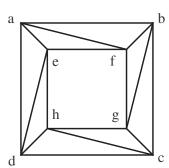


Isomorphic:, for example: $\{1,2,3,4,5,6,7,8\} \rightarrow \{a,b,f,e,d,c,g,h\}$

You need to make sure that if 4 vertices construct a C_4 then their mapped vertices also form a C_4 .

b)





Not isomorphic: the left graph does not have C_3 as subgraph but the right one does.

Important: In case of isomorphism, you must present a bijection. In case non-isomorphism, you must present an argument.

Problem 5. (30 points, 2 points each) TRUE or FALSE?

Circle correct answers with ink. No explanation is required or will be considered.

- **T F** (1) The hypercube graph H_4 contains an Eulerian cycle.
- \mathbf{T} \mathbf{F} (2) The hypercube graph H_4 contains a Hamiltonian cycle.
- **T F** (3) A subgraph of a connected graph is always connected.
- T F (4) A subgraph of a disconnected graph is always disconnected.
- **T F** (5) The sum of degrees of $K_{\ell,\ell}$ is ℓ^2 .
- **T F** (6) The sum of degrees of a graph on $n \ge 3$ vertices is smaller than $n^2 1$.
- **T F** (7) Computing the number of walks of given length in a graph can be done efficiently.
- T F (8) Deciding whether a graph has Hamiltonian cycle can be done efficiently.
- **T F** (9) The number of (shortest) grid walks $(0,0) \rightarrow (5,5)$ which do not go through (1,3), (3,4), (4,1), (1,5) is > 100.
- **T F** (10) Graph H is a subgraph of G. Graph H contains a Hamiltonian cycle. Then G contains a Hamiltonian cycle.
- **T F** (11) Graph H is a subgraph of G. Graph G contains a Hamiltonian cycle. Then H contains a Hamiltonian cycle.
- **T** F (12) Graph $K_{50.50}$ contains a subgraph isomorphic to K_{10} .
- **T** F (13) Graph $K_{50,50}$ contains a subgraph isomorphic to $K_{10,10}$.
- **T F** (14) The number of walks $1 \to 1$ of length k in a graph G on n vertices can be computed via matrix $(A_G)^n$.
- T F (15) Isomorphic graphs have the same number of Eulerian circuits.

TTFFF TTFFF FFTFT