MIDTERM 2 (MATH 61, SPRING 2017)

\qquad
Your Name:

UCLA id: \qquad

Math 61 Section:

Date:

The rules:

You MUST simplify completely and BOX all answers with an INK PEN.
You are allowed to use only this paper and pen/pencil. No calculators.
No books, no notebooks, no phones, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught violating the rules get automatic 10% score deduction.

Problem 1. (15 points)
Solve the following LHRR: $a_{n+1}=5 a_{n}-6 a_{n-1}, a_{1}=9, a_{2}=20$.

Solution:

characteristic polynomial: $x^{2}=5 x-6 \Rightarrow x_{1}=2, x_{2}=3$
We have: $a_{n}=A \cdot 2^{n}+B \cdot 3^{n}$
Plug in a_{1} and a_{2} we get $A=\frac{7}{2}, B=\frac{2}{3}$

Problem 2. (20 points)
Find the number of subgraphs of G isomorphic to H, where
a) $G=C_{12}, H=P_{5}$.

Answer: 12
b) $G=K_{9,9}, H=C_{6}$.

Answer: $\binom{9}{3}^{2} \times 6$
Hint: First choose $K_{3,3}$, then there are $6 C_{6}$ in it
c) $G=K_{9,9}, H=C_{7}$.

Answer: 0
d) $G=H_{3}$ (the 3-cube), $H=C_{4}$.

Answer: 6 (only the 6 faces of the cube count)
e) $G=H_{3}$ (the 3-cube), $H=P_{4}$.

Answer: 48 (Fix the central edge of P_{4} : There are 12 different central edges for P_{4}, each of them could induce $4 P_{4}$)

Problem 3. (20 points)
For each of these sequences, either draw a simple graph with this score (degree sequence), or explain why there is no such graph.
a) $(3,3,3,1,1,1)$

Exist: Just draw a triangle and 3 extra vertices (one to one) connecting to each vertex of the triangle.
b) $(4,4,4,1,1,1)$

Not Exist: sum of degree is odd.
c) $(5,5,5,3,2,1)$

Not Exist: sum of degree is odd.
d) $(4,4, \ldots, 4) \leftarrow 16$ numbers.

Exist: You can draw 2 copies of $K_{4,4}$
e) $(3,3,3,3,2,2,2,2)$

Exist: You can draw a C_{8} and add 2 chords

Problem 4. (15 points)

Decide whether the following pairs of graphs on 8 vertices are isomorphic or non-isomorphic.
a)

Isomorphic:, for example: $\{1,2,3,4,5,6,7,8\} \rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{e}, \mathrm{d}, \mathrm{c}, \mathrm{g}, \mathrm{h}\}$
You need to make sure that if 4 vertices construct a C_{4} then their mapped vertices also form a C_{4}.
b)

Not isomorphic: the left graph does not have C_{3} as subgraph but the right one does.
Important: In case of isomorphism, you must present a bijection. In case non-isomorphism, you must present an argument.

Problem 5. (30 points, 2 points each) TRUE or FALSE?
Circle correct answers with ink. No explanation is required or will be considered.

T $\quad \mathbf{F}$ (1) The hypercube graph H_{4} contains an Eulerian cycle.
T F (2) The hypercube graph H_{4} contains a Hamiltonian cycle.
T F (3) A subgraph of a connected graph is always connected.
T F (4) A subgraph of a disconnected graph is always disconnected.
$\mathbf{T} \quad \mathbf{F}$ (5) The sum of degrees of $K_{\ell, \ell}$ is ℓ^{2}.
T $\quad \mathbf{F}$ (6) The sum of degrees of a graph on $n \geq 3$ vertices is smaller than $n^{2}-1$.
T F (7) Computing the number of walks of given length in a graph can be done efficiently.
T F (8) Deciding whether a graph has Hamiltonian cycle can be done efficiently.
T $\quad \mathbf{F} \quad(9)$ The number of (shortest) grid walks $(0,0) \rightarrow(5,5)$ which do not go through $(1,3),(3,4),(4,1),(1,5)$ is >100.

T F (10) Graph H is a subgraph of G. Graph H contains a Hamiltonian cycle. Then G contains a Hamiltonian cycle.

T F (11) Graph H is a subgraph of G. Graph G contains a Hamiltonian cycle. Then H contains a Hamiltonian cycle.

T F (12) Graph $K_{50,50}$ contains a subgraph isomorphic to K_{10}.
T \quad F (13) Graph $K_{50,50}$ contains a subgraph isomorphic to $K_{10,10}$.
T F (14) The number of walks $1 \rightarrow 1$ of length k in a graph G on n vertices can be computed via matrix $\left(A_{G}\right)^{n}$.

T F (15) Isomorphic graphs have the same number of Eulerian circuits.

TTFFF TTFFF FFTFT

