MIDTERM 1 (MATH 61, SPRING 2017)

Your Name:	
UCLA id:	
Math 61 Sec	tion:
Date:	

The rules:

You MUST simplify completely and BOX all answers with an **INK PEN**. You are allowed to use only this paper and pen/pencil. No calculators. No books, no notebooks, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught violating the rules get automatic 10% score deduction.

Points:	
1	
2	
3	
4	
5	
Total:	(out of 100)

Problem 1. (20 points)

Compute the probability that 4-subset A of $\{1, 2, ..., 10\}$ satisfies:

- a) A has no odd numbers,
- b) A has at least one number ≤ 3 ,
- c) A contains 1 but not 7.
- d) the smallest number in A is divisible by 3

Solutions.

- a) The 4-subsets of $\{1, \ldots, 10\}$ with no odd numbers are the 4-subsets of $\{2, 4, 6, 8, 10\}$ which has 5 elements. Therefore the probability is $\frac{\binom{5}{4}}{\binom{10}{4}} = \frac{1}{42}$.
- b) The 4-subsets of $\{1, \ldots, 10\}$ with no number ≤ 3 are the 4-subsets of $\{4, \ldots, 10\}$ which has 7 elements. Therefore the probability is $1 \frac{\binom{7}{4}}{\binom{10}{4}} = \frac{5}{6}$.
- c) The 4-subsets of $\{1, \ldots, 10\}$ containing 1 but not 7 can be expressed in one way as $\{1\} \cup S$ where S is a 3-subset of $\{1, 2, 4, 5, 6, 8, 9, 10\}$ which has 8 elements. The probability must then be $\frac{\binom{8}{3}}{\binom{10}{4}} = \frac{4}{15}$.
- d) The 4-subsets of $\{1,\ldots,10\}$ with smallest number divisible by 3 must have smallest number 3 or 6. Here 9 is not an option because there are fewer than 4 numbers ≥ 9 in the set. The 4-subsets of $\{1,\ldots,10\}$ with smallest number 3 can be written in exactly one way as $\{3\} \cup S$ where S is a 3-subset of $\{4,5,6,7,8,9,10\}$ which has 7 elements and each such S makes $\{3\} \cup S$ a 4-subset with smallest number 3. There are then $\binom{7}{3}$ 4-subsets with smallest number 3. By similar reasoning there are $\binom{4}{3}$ subsets with smallest number 6. It follows that the probability is $\frac{\binom{7}{3}+\binom{4}{3}}{\binom{10}{4}}=\frac{13}{70}$.

Problem 2. (20 points)

Let $X = \mathbb{N} = \{0, 1, 2, \ldots\}$ be the set of all non-negative integers. For each of the following functions $f: X \to X$ decide whether they are injective, surjective, bijective:

- a) f(x) = x + 1
- b) $f(x) = x^2 1$
- f(x) = 2x
- d) $f(x) = (x^2 + 2x)/(x+2)$

Solutions.

- a) That f is injective but not surjective is a fundamental properties of \mathbb{N} . If $x,y\in\mathbb{N}$ and f(x)=f(y), then x+1=y+1 and so x=y. This shows f is injective. Since $x+1\neq 0$ for all $x\in\mathbb{N}$, f is not surjective and consequently is not bijective.
- b) There is no $y \in X$ so that $y = 0^2 1$. Therefore it is not the case that f is a function $X \to X$.
- c) Suppose $x,y\in X$ and f(x)=f(y). Then we would have 2x=2y which gives us x=y. That x=y follows from our assumptions shows that f is injective. However f is not surjective since f(x)=2x is an even integer whenever $x\in X=\mathbb{N}$ and so f(x) cannot be an odd element of \mathbb{N} . For example, $f(x)\neq 1\in X$ for every $x\in X$. Therefore f is injective, but not surjective or bijective.
- d) We have that for every $x \in \mathbb{N}$, $f(x) = (x^2 + 2x)/(x+2) = x(x+2)/(x+2) = x$. Then f is invertible, being the identity map on X and therefore injective, surjective, and bijective.

Problem 3. (15 points)

Let $a_n = 1111 \cdots 1$ (n ones). Suppose a_k is divisible by 97. Use induction to show that $a_{k \cdot n} = 0 \mod 97$, for all $n \ge 1$.

Solution.

BASE: For n = 1, we have $a_{k+1} = a_k = a_k - 0$ is divisable by 97. Therefore $a_k = 0 \mod 97$.

STEP: Suppose n was a particular natural number with the property that $a_{k\cdot n}=0 \mod 97$. By the definition of the sequence a_1,a_2,\ldots and interpreting the base 10 expansion we have $a_{k\cdot (n+1)}=a_k+10^k a_{k\cdot n}$. By induction hypothesis and since 10^k is an integer, the product $10^k a_{k\cdot n}=0 \mod 97$. Recall that $a_k=0 \mod 97$ (from the base case). Then the sum $a_{k\cdot (n+1)}=0+0=0 \mod 97$. This completes the induction.

5

Problem 4. (15 points)

Find closed formulas for the following sequences :

- a) $4, 4, 6, 8, 12, 18, 28, 44, 70, 112, \dots$
- b) $a_1 = 1$, $a_{n+1} = a_n \cdot \binom{n+1}{2}$
- c) $a_1 = 1$, $a_2 = 1$, $a_{n+1} = a_{n-1} a_n$ for $n \ge 2$.

Note: you can express a_n in terms of Fibonacci numbers F_n .

Solutions. In each case, either of the following formulas is correct.

a) We have:

$$a_n = 2F_n + 2 = 4 + 2(F_1 + F_2 + \dots + F_{n-2})$$

b) We have:

$$a_n = \frac{(n-1)!^2 n}{2^{n-1}} = \frac{(n-1)! n!}{2^{n-1}}$$

c) We have: $a_n=(-1)^nF_{n-3}$ for $n\geq 4$, and $a_1=a_2=1$ and $a_3=0$.

Problem 5. (30 points, 2 points each) TRUE or FALSE?

Circle correct answers with ink. No explanation is required or will be considered.

- **T F** (1) The number of functions from $\{A, B, C, D\}$ to $\{1, 2, 3\}$ is equal to 4^3 .
- **T F** (2) The sequence 1, 3/2, 5/3, 7/6, 9/8,... is increasing.
- **T F** (3) The sequence $-1, -2, -3, -4, \ldots$ is non-increasing.
- **T F** (4) There are 4 anagrams of the word MAMA.
- **T F** (5) There are infinitely many Fibonacci numbers which are divisible by 3.
- **T F** (6) The number of permutations of $\{1, 2, 3, 4, 5\}$ is smaller than 123.
- **T F** (7) The number of 3-permutations of $\{1, 2, 3, 4, 5, 6\}$ is equal to $\binom{6}{3}$.
- \mathbf{T} \mathbf{F} (8) The number of 3-subsets of $\{1, 2, 3, 4\}$ is equal to 4.
- **T F** (9) The number of permutations of $\{1, 2, ..., n\}$ which have n preceding n-1 (not necessarily immediately) is equal to n!/2
- **T F** (10) For every $A, B \subset \{1, 2, \dots, 12\}$ we have $|A \cap B| < |A \cup B|$.
- **T F** (11) For all $n \ge 1$, we have

$$\binom{2n}{0} + \binom{2n}{2} + \binom{2n}{4} + \ldots + \binom{2n}{2n} = 2^{2n-1}.$$

- **T F** (12) The number of grid walks from (0,0) to (10,10) going through (3,7) is equal to $\binom{10}{3}^2$.
- **T F** (13) The number of grid walks from (0,0) to (10,10) avoiding (10,0) and (0,10) is equal to $\frac{1}{2}\binom{20}{10}$.
- **T F** (14) The number of anagrams of MISSISSIPPI which begin with M is greater than the number of anagrams which begin with S.
- **T F** (15) The following parabolas are drawn in the plane:

$$y = x^2 - n^2 x - n^3, \qquad n = 1, \dots, 12.$$

Then the regions of the plane separated by these parabolas can be colored with two colors in such a way that no two adjacent regions have the same color.

Solutions. FFTFT TFTTF TTFFT