HOMEWORK 4 (MATH 61, SPRING 2015)

NOTE: Everywhere below, we use book notation:

$$
C(n, k)=\binom{n}{k}
$$

6.3
2. $\frac{6!}{2!}=360$.
3. $\frac{12!}{4!2!}$.
6.7
15. From the Binomial Theorem

$$
(a+b)^{n}=\sum_{k=0}^{n} C(n, k) a^{n-k} b^{k}
$$

let $a=1$ and $b=-1$. We have

$$
0=(1-1)^{n}=\sum_{k=0}^{n} C(n, k) 1^{n-k}(-1)^{k}=\sum_{k=0}^{n}(-1)^{k} C(n, k)
$$

20. From Example 6.7.8 with $k=2$, we have

$$
\sum_{i=2}^{n} C(i, 2)=C(n+1,3)
$$

Since $C(i, 2)=\frac{i(i-1)}{2}$,

$$
1 \cdot 2+2 \cdot 3+(n-1) n=2 \cdot \sum_{i=2}^{n} C(i, 2)=2 C(n+1,3)=\frac{(n+1) n(n-1)}{3}
$$

7.2
16. If $a_{n}=7 a_{n-1}-10 a_{n-2} ; a_{0}=5$, and $a_{1}=16$, then the characteristic equation $\lambda^{2}=$ $7 \lambda-10$ can be rewritten $(\lambda-5)(\lambda-2)=0$ and so has two single roots $\lambda=2,5$. Now there are constants c_{1} and c_{2} so that $a_{n}=c_{1} 2^{n}+c_{2} 5^{n}$. So we obtain a linear system consisting of $5=c_{1}+c_{2}$ and $16=2 c_{1}+5 c_{2}$. Equivalently, $5=c_{1}+c_{2}$ and $6=3 c_{2}$, which has a unique solution $c_{1}=3, c_{2}=2$. So $a_{n}=3 \cdot 2^{n}+2 \cdot 5^{n}$ for every natural number $n \geq 0$.
17. If $a_{n}=2 a_{n-1}+8 a_{n-2} ; a_{0}=4$, and $a_{1}=10$, then the characteristic equation $\lambda^{2}=2 \lambda+8$ can be rewritten $(\lambda-4)(\lambda+2)=0$ and so has two single roots $\lambda=-2$, 4 . Now there are constants c_{1} and c_{2} so that $a_{n}=c_{1}(-2)^{n}+c_{2} 4^{n}$. So we obtain a linear system consisting of $4=c_{1}+c_{2}$ and $10=-2 c_{1}+4 c_{2}$. Equivalently, $4=c_{1}+c_{2}$ and $18=6 c_{2}$, which has a unique solution $c_{1}=1, c_{2}=3$. So $a_{n}=(-2)^{n}+3 \cdot 4^{n}$ for every natural number $n \geq 0$.
22. If $9 a_{n}=6 a_{n-1}-a_{n-2} ; a_{0}=6$, and $a_{1}=5$, then the characteristic equation $9 \lambda^{2}=6 \lambda-1$ can be rewritten $(3 \lambda-1)^{2}=0$ and so has a double root $\lambda=1 / 3$. Now there are constants c_{1} and c_{2} so that $a_{n}=c_{1}(1 / 3)^{n}+c_{2} n(1 / 3)^{n}$. So we obtain a linear system consisting of $6=c_{1}+0 c_{2}$ and $5=(1 / 3) c_{1}+(1 / 3) c_{2}$. We get $c_{1}=6$ and $c_{2}=9$. So $a_{n}=6(1 / 3)^{n}+9 n(1 / 3)^{n}$ for every natural number $n \geq 0$.
I. Find the number of anagrams of MISSISSIPPI
a) $C(10,4) C(6,3) C(3,2)=\frac{10!}{43!2!}$.
b) $C(9,4) C(5,2) C(3,2)=\frac{9!}{4!2!2!}$.
c) $C(10,4) C(6,4) C(2,1)=\frac{10!}{4!!2!}$.
d) $C(8,4) C(4,2) C(2,1)=\frac{8!}{4!2!}$.
e) $C(9,4) C(5,2) C(3,2)=\frac{9!}{4!2!2!}$.
f) $C(11,6) C(5,4)=\frac{11!}{6!4!}$.
g) $C(11,8) C(3,2)=\frac{11!}{8!2!}$.
h) 0 .
i) $2 C(10,4) C(6,4) C(2,1)-C(9,4) C(5,4)=2 \cdot \frac{10!}{4!4!}-\frac{9!}{4!4!}$.
j) $2 C(10,4) C(6,3) C(3,2)-C(9,4) C(5,2) C(3,2)=2 \cdot \frac{10!}{4!3!2!}-\frac{9!}{4!2!2!}$.
II. On a grid, let $A=(0,0), B=(10,12), C=(3,2), D=(6,9), E=(9,7)$. The number of (shortest) grid walks $A \rightarrow B$ which
a) go through C are $C(5,3) C(17,7)$.
b) don't go through D are $C(22,10)-C(15,6) C(7,4)$.
c) go through C but not D are $C(5,3) C(17,7)-C(5,3) C(10,3) C(7,4)$.
d) go through E but not C are $C(16,9) C(6,1)-C(5,3) C(11,6) C(6,1)$.
e) go through C and E are $C(5,3) C(11,6) C(6,1)$.
f) go through either D or E are $C(15,6) C(7,4)+C(16,9) C(6,1)$.
g) go through D and E are 0 .
h) go through neither C nor D nor $E C(22,10)-C(5,3) C(17,7)-C(15,6) C(7,4)-$ $C(16,9) C(6,1)+C(5,3) C(10,3) C(7,4)+C(5,3) C(11,6) C(6,1)$.
III. Prove the following results about Fibonacci numbers F_{n} :
a) there are infinitely many n such that $F_{n}=0 \bmod 7$

For any $n>8, F_{n}=F_{n-1}+F_{n-2}=2 F_{n-2}+F_{n-3}=3 F_{n-3}+2 F_{n-4}=5 F_{n-4}+3 F_{n-5}=$
$8 F_{n-5}+5 F_{n-6}=13 F_{n-6}+8 F_{n-7}=21 F_{n-7}+13 F_{n-8}=13 F_{n-8}(\bmod 7)$. Since $F_{8}=21=0$ $\bmod 7, F_{n}=0 \bmod 7$ for any $n=0 \bmod 7$. Therefore, there are infinitely many n such that $F_{n}=0 \bmod 7$.
b) there are infinitely many n such that F_{n} begins with 1 .

Let k be a positive integer. Let F_{n} be the largest Fibonacci number such that $F_{n}<2 \cdot 10^{k}$. Then $F_{n+1} \geq 10^{k}$ and $F_{n+1}=F_{n}+F_{n-1}<2 F_{n}<2 \cdot 10^{k}$. Therefore, F_{n+1} is a $(k+1)$-digit number that begins with 2 . Since we can find such number for every $k>0$, there are infinitely many n such that F_{n} begins with 1 .
IV. Draw two non-isomorphic graphs with scores (degree sequences)
a) $(3,3,3,3,5,5,6,6,6)$ [Answers will vary. One strategy is to form a complete graph with 5 vertices and draw edges between those 5 vertices and 4 remaining vertices as well as two edges between two pairs of the four vertices to result in graphs with the given score. To ensure that they are non-isomorphic one can for instance choose graphs so that the degree 5 vertices are incident to the same degree 3 vertex or not.]
b) $(3,3,3,5,5,5,6,7,7)$ [Answers will vary. The strategy outlined above can be modified to begin with a complete graph on 6 vertices. This complete graph can be extended so that a triangle is formed by degree 3,6 , and 7 vertices or so that such a triangle is not formed.]
V. We will show $a_{n}=F_{2 n}$ by induction. In the base case, we have $a_{1}=F_{1}=1=F_{2}=F_{2 \cdot 1}$. Assuming n is a natural number so that $a_{n}=F_{2 n}$, we have $a_{n+1}=a_{n}+F_{2(n+1)-1}=F_{2 n}+$ $F_{2 n+1}=F_{2 n+2}=F_{2(n+1)}$ using the induction hypothesis in the second equality of the chain.
VI. Using the closed formula $F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$, and letting $\phi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}$ we have for $n>1$,

$$
\begin{aligned}
5 F_{n+1} F_{n-1} & =\left(\phi^{n+1}-\psi^{n+1}\right)\left(\phi^{n-1}-\psi^{n-1}\right) \\
& =\phi^{2 n}-(\phi \psi)^{n-1}\left(\phi^{2}+\psi^{2}\right)+\psi^{2 n} \\
& =\left(\phi^{n}-\psi^{n}\right)^{2}+2(\phi \psi)^{n}-(\phi \psi)^{n-1}\left(\phi^{2}+\psi^{2}\right) \\
& =5\left(\frac{1}{\sqrt{5}} \phi^{n}-\frac{1}{\sqrt{5}} \psi^{n}\right)^{2}-(\phi \psi)^{n-1}(\phi-\psi)^{2} \\
& =5 F_{n}^{2}-(-1)^{n-1}(\sqrt{5})^{2} \\
& =5 F_{n}^{2}+5(-1)^{n} .
\end{aligned}
$$

Above we used the identities $\phi \psi=-1$ and $\phi-\psi=\sqrt{5}$. By dividing both sides by 5 we obtain $F_{n+1} F_{n-1}=F_{n}^{2}+(-1)^{n}$ as needed.
VII. We will solve $a_{n+1}=4 a_{n}-3 a_{n-1}$ for three sets of initial conditions. The polynomial $\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)$ has two single roots at $\lambda=1,3$ so solutions to the recurrence are of the form $a_{n}=c_{1}+c_{2} 3^{n}$ for all n for some constants c_{1}, c_{2}.
i) Under the initial conditions $a_{1}=1$ and $a_{2}=3$, we have $1=c_{1}+3 c_{2}$ and $3=c_{1}+9 c_{2}$. Solving this system gives $c_{2}=1 / 3$ and $c_{1}=0$ so that $a_{n}=3^{n-1}$ for all $n \geq 1$. Let us verify this by induction. In the base cases we have $a_{1}=1=3^{0}=3^{1-1}$ and $a_{2}=3=3^{1}=3^{2-1}$. Assuming n is a natural number such that both $a_{n}=3^{n-1}$ and $a_{n-1}=3^{(n-1)-1}$, we have $a_{n+1}=4 a_{n}-3 a_{n-1}=4 \cdot 3^{n-1}-3 \cdot 3^{(n-1)-1}=4 \cdot 3^{n-1}-3^{n-1}=3 \cdot 3^{n-1}=3^{(n+1)-1}$, completing the induction.
ii) Under the initial conditions $a_{1}=5$ and $a_{2}=5$, we have $5=c_{1}+3 c_{2}$ and $5=c_{1}+9 c_{2}$. Solving this system gives $c_{2}=0$ and $c_{1}=5$ so that $a_{n}=5$ for all $n \geq 1$. Let us verify this by induction. In the base cases we have $a_{1}=5$ and $a_{2}=5$ by our initial conditions. Assuming n is a natural number such that both $a_{n}=5$ and $a_{n-1}=5$, we have $a_{n+1}=4 a_{n}-3 a_{n-1}=$ $4 \cdot 5-3 \cdot 5=5$, completing the induction.
iii) Under the initial conditions $a_{1}=2$ and $a_{2}=4$, we have $2=c_{1}+3 c_{2}$ and $4=c_{1}+9 c_{2}$. Solving this system gives $c_{2}=1 / 3$ and $c_{1}=1$ so that $a_{n}=1+3^{n-1}$ for all $n \geq 1$. Let us verify this by induction. In the base cases we have $a_{1}=2=1+1=1+3^{0}=1+3^{1-1}$ and $a_{2}=4=1+3=1+3^{2-1}$ by our initial conditions. Assuming n is a natural number such that both $a_{n}=1+3^{n-1}$ and $a_{n-1}=1+3^{(n-1)-1}$, we have $a_{n+1}=4 a_{n}-3 a_{n-1}=$ $4\left(1+3^{n-1}\right)-3\left(1+3^{(n-1)-1}\right)=4+4 \cdot 3^{n-1}-3-3^{n-1}=1+(4-1) 3^{n-1}=1+3^{(n+1)-1}$, completing the induction.

