
HOMEWORK 4 (MATH 61, SPRING 2015)

NOTE: Everywhere below, we use book notation:

C(n, k) =
(
n

k

)

6.3
2. 6!

2! = 360.
3. 12!

4!2! .

6.7
15. From the Binomial Theorem

(a+ b)n =
n∑

k=0

C(n, k)an−kbk,

let a = 1 and b = −1. We have

0 = (1− 1)n =
n∑

k=0

C(n, k)1n−k(−1)k =
n∑

k=0

(−1)kC(n, k).

20. From Example 6.7.8 with k = 2, we have
n∑

i=2

C(i, 2) = C(n+ 1, 3).

Since C(i, 2) = i(i−1)
2 ,

1 · 2 + 2 · 3 + (n− 1)n = 2 ·
n∑

i=2

C(i, 2) = 2C(n+ 1, 3) =
(n+ 1)n(n− 1)

3
.

7.2
16. If an = 7an−1 − 10an−2; a0 = 5, and a1 = 16, then the characteristic equation λ2 =

7λ− 10 can be rewritten (λ− 5)(λ− 2) = 0 and so has two single roots λ = 2, 5. Now
there are constants c1 and c2 so that an = c12n + c25n. So we obtain a linear system
consisting of 5 = c1 + c2 and 16 = 2c1 + 5c2. Equivalently, 5 = c1 + c2 and 6 = 3c2,
which has a unique solution c1 = 3, c2 = 2. So an = 3 · 2n + 2 · 5n for every natural
number n ≥ 0.

17. If an = 2an−1+8an−2; a0 = 4, and a1 = 10, then the characteristic equation λ2 = 2λ+8
can be rewritten (λ − 4)(λ + 2) = 0 and so has two single roots λ = −2, 4. Now there
are constants c1 and c2 so that an = c1(−2)n + c24n. So we obtain a linear system
consisting of 4 = c1 + c2 and 10 = −2c1 + 4c2. Equivalently, 4 = c1 + c2 and 18 = 6c2,
which has a unique solution c1 = 1, c2 = 3. So an = (−2)n + 3 · 4n for every natural
number n ≥ 0.

22. If 9an = 6an−1−an−2; a0 = 6, and a1 = 5, then the characteristic equation 9λ2 = 6λ−1
can be rewritten (3λ − 1)2 = 0 and so has a double root λ = 1/3. Now there are
constants c1 and c2 so that an = c1(1/3)n + c2n(1/3)n. So we obtain a linear system
consisting of 6 = c1 + 0c2 and 5 = (1/3)c1 + (1/3)c2. We get c1 = 6 and c2 = 9. So
an = 6(1/3)n + 9n(1/3)n for every natural number n ≥ 0.
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2 HOMEWORK 4 (MATH 61, SPRING 2015)

I. Find the number of anagrams of MISSISSIPPI

a) C(10, 4)C(6, 3)C(3, 2) = 10!
4!3!2! .

b) C(9, 4)C(5, 2)C(3, 2) = 9!
4!2!2! .

c) C(10, 4)C(6, 4)C(2, 1) = 10!
4!4!2! .

d) C(8, 4)C(4, 2)C(2, 1) = 8!
4!2! .

e) C(9, 4)C(5, 2)C(3, 2) = 9!
4!2!2! .

f) C(11, 6)C(5, 4) = 11!
6!4! .

g) C(11, 8)C(3, 2) = 11!
8!2! .

h) 0.
i) 2C(10, 4)C(6, 4)C(2, 1)− C(9, 4)C(5, 4) = 2 · 10!

4!4! −
9!

4!4! .
j) 2C(10, 4)C(6, 3)C(3, 2)− C(9, 4)C(5, 2)C(3, 2) = 2 · 10!

4!3!2! −
9!

4!2!2! .

II. On a grid, let A = (0, 0), B = (10, 12), C = (3, 2), D = (6, 9), E = (9, 7). The number of
(shortest) grid walks A→ B which

a) go through C are C(5, 3)C(17, 7).
b) don’t go through D are C(22, 10)− C(15, 6)C(7, 4).
c) go through C but not D are C(5, 3)C(17, 7)− C(5, 3)C(10, 3)C(7, 4).
d) go through E but not C are C(16, 9)C(6, 1)− C(5, 3)C(11, 6)C(6, 1).
e) go through C and E are C(5, 3)C(11, 6)C(6, 1).
f) go through either D or E are C(15, 6)C(7, 4) + C(16, 9)C(6, 1).
g) go through D and E are 0.
h) go through neither C nor D nor E C(22, 10) − C(5, 3)C(17, 7) − C(15, 6)C(7, 4) −

C(16, 9)C(6, 1) + C(5, 3)C(10, 3)C(7, 4) + C(5, 3)C(11, 6)C(6, 1).

III. Prove the following results about Fibonacci numbers Fn :
a) there are infinitely many n such that Fn = 0 mod 7
For any n > 8, Fn = Fn−1 + Fn−2 = 2Fn−2 + Fn−3 = 3Fn−3 + 2Fn−4 = 5Fn−4 + 3Fn−5 =

8Fn−5 + 5Fn−6 = 13Fn−6 + 8Fn−7 = 21Fn−7 + 13Fn−8 = 13Fn−8(mod7). Since F8 = 21 = 0
mod 7, Fn = 0 mod 7 for any n = 0 mod 7. Therefore, there are infinitely many n such that
Fn = 0 mod 7.

b) there are infinitely many n such that Fn begins with 1.
Let k be a positive integer. Let Fn be the largest Fibonacci number such that Fn < 2 · 10k.

Then Fn+1 ≥ 10k and Fn+1 = Fn + Fn−1 < 2Fn < 2 · 10k. Therefore, Fn+1 is a (k + 1)-digit
number that begins with 2. Since we can find such number for every k > 0, there are infinitely
many n such that Fn begins with 1.

IV. Draw two non-isomorphic graphs with scores (degree sequences)
a) (3,3,3,3,5,5,6,6,6) [Answers will vary. One strategy is to form a complete graph with 5

vertices and draw edges between those 5 vertices and 4 remaining vertices as well as two edges
between two pairs of the four vertices to result in graphs with the given score. To ensure that
they are non-isomorphic one can for instance choose graphs so that the degree 5 vertices are
incident to the same degree 3 vertex or not.]

b) (3,3,3,5,5,5,6,7,7) [Answers will vary. The strategy outlined above can be modified to
begin with a complete graph on 6 vertices. This complete graph can be extended so that a
triangle is formed by degree 3, 6, and 7 vertices or so that such a triangle is not formed.]
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V. We will show an = F2n by induction. In the base case, we have a1 = F1 = 1 = F2 = F2·1.
Assuming n is a natural number so that an = F2n, we have an+1 = an + F2(n+1)−1 = F2n +
F2n+1 = F2n+2 = F2(n+1) using the induction hypothesis in the second equality of the chain.

VI. Using the closed formula Fn = 1√
5

(
1+
√

5
2

)n

− 1√
5

(
1−

√
5

2

)n

, and letting φ = 1+
√

5
2 and

ψ = 1−
√

5
2 we have for n > 1,

5Fn+1Fn−1 = (φn+1 − ψn+1)(φn−1 − ψn−1)

= φ2n − (φψ)n−1(φ2 + ψ2) + ψ2n

= (φn − ψn)2 + 2(φψ)n − (φψ)n−1(φ2 + ψ2)

= 5(
1√
5
φn − 1√

5
ψn)2 − (φψ)n−1(φ− ψ)2

= 5F 2
n − (−1)n−1(

√
5)2

= 5F 2
n + 5(−1)n.

Above we used the identities φψ = −1 and φ − ψ =
√

5. By dividing both sides by 5 we
obtain Fn+1Fn−1 = F 2

n + (−1)n as needed.

VII. We will solve an+1 = 4an − 3an−1 for three sets of initial conditions. The polynomial
λ2 − 4λ+ 3 = (λ− 1)(λ− 3) has two single roots at λ = 1, 3 so solutions to the recurrence are
of the form an = c1 + c23n for all n for some constants c1, c2.

i) Under the initial conditions a1 = 1 and a2 = 3, we have 1 = c1 + 3c2 and 3 = c1 + 9c2.
Solving this system gives c2 = 1/3 and c1 = 0 so that an = 3n−1 for all n ≥ 1. Let us verify
this by induction. In the base cases we have a1 = 1 = 30 = 31−1 and a2 = 3 = 31 = 32−1.
Assuming n is a natural number such that both an = 3n−1 and an−1 = 3(n−1)−1, we have
an+1 = 4an−3an−1 = 4 ·3n−1−3 ·3(n−1)−1 = 4 ·3n−1−3n−1 = 3 ·3n−1 = 3(n+1)−1, completing
the induction.

ii) Under the initial conditions a1 = 5 and a2 = 5, we have 5 = c1 + 3c2 and 5 = c1 + 9c2.
Solving this system gives c2 = 0 and c1 = 5 so that an = 5 for all n ≥ 1. Let us verify this by
induction. In the base cases we have a1 = 5 and a2 = 5 by our initial conditions. Assuming
n is a natural number such that both an = 5 and an−1 = 5, we have an+1 = 4an − 3an−1 =
4 · 5− 3 · 5 = 5, completing the induction.

iii) Under the initial conditions a1 = 2 and a2 = 4, we have 2 = c1 + 3c2 and 4 = c1 + 9c2.
Solving this system gives c2 = 1/3 and c1 = 1 so that an = 1 + 3n−1 for all n ≥ 1. Let us
verify this by induction. In the base cases we have a1 = 2 = 1 + 1 = 1 + 30 = 1 + 31−1

and a2 = 4 = 1 + 3 = 1 + 32−1 by our initial conditions. Assuming n is a natural number
such that both an = 1 + 3n−1 and an−1 = 1 + 3(n−1)−1, we have an+1 = 4an − 3an−1 =
4(1 + 3n−1) − 3(1 + 3(n−1)−1) = 4 + 4 · 3n−1 − 3 − 3n−1 = 1 + (4 − 1)3n−1 = 1 + 3(n+1)−1,
completing the induction.


