MATH 61 (SPRING 2017): HOMEWORK 3

Warning: everywhere below we follow book notation:

$$
P(n, k)=\frac{n!}{(n-k)!} \quad \text { and } \quad C(n, k)=\binom{n}{k}
$$

6.2
6. $P(11,5)=\frac{11!}{6!}$.
8. $P(12,4)=\frac{12!}{8!}$.
29. $C(12,4)=\frac{12!}{8!\cdot 4!}$.
34. $C(6,3) \cdot C(7,4)$
35. (\# of Total Committees) - (\# of All Male Committees) $=C(13,4)-C(6,4)$.
37. (\# of Total Committees) - (\# of All Male Committees) - (\# of All Female Committees) = $C(13,4)-C(6,4)-C(7,4)$.

6.7

2. $(2 c-3 d)^{5}=\sum_{k=0}^{5} C(5, k) 2^{k}(-3)^{5-k} c^{k} d^{5-k}=32 c^{5}-240 c^{4} d+720 c^{3} d^{2}-1080 c^{2} d^{3}+810 c d^{4}-243 d^{5}$
3. $C(12,6) 2^{6}(-1)^{6}=\frac{12!\cdot 2^{6}}{(6!)^{2}}$
4. $C(10,5) C(5,3)=\frac{10!}{5!\cdot 2!\cdot 3!}$

I.

Before we begin, here is a counting principle (CP) you can use repeatedly throughout this problem.
Say you have distinct natural numbers $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ and and ordered k-tuple of distinct natural numbers between 1 and $k,\left(b_{1}, \ldots, b_{k}\right)$. How many permutations of $\{1, \ldots, n\}$ are there with $a_{i_{j}}=b_{j}$ for each $j=1, \ldots, k$? There are $(n-k)$! of them.
Here is why: There is a bijection between the set S of permutations of the elements of $\{1, \ldots, n\} \backslash$ $\left\{b_{1}, \ldots, b_{k}\right\}$ (the set of natural numbers between 1 and n that are not equal to any of the b_{i}) and the set T of permutations we are counting. The bijection $f: T \rightarrow S$ takes a permutation in T and deletes b_{1}, \ldots, b_{k}.
Here is a detailed explanation of why f is bijective. First, let us start with why f is injective. Take two permutations in T that become the same when b_{1}, \ldots, b_{k} are deleted. They (the two permutations in T) must agree in every position besides i_{1}, \ldots, i_{k} because for elements of T, b_{1}, \ldots, b_{k} occur in the i_{1}, \ldots, i_{k} positions. However they also agree in the i_{1}, \ldots, i_{k} positions by the definition of T (permutations with b_{j} in the i_{j} position). Therefore, they agree at every position and are equal (the same) as permutations. To see f is surjective begin with an element of S, choose one. Create a permutation by drawing n blanks (ordered) and writing b_{j} on the i_{j}-th blank. Fill the remaining $n-k$ remaining blanks with your chosen element of S; you will get an element of T. When you apply f to this element of T, all the b_{j} are deleted and you are left with your chosen element of S. Since this argument works for any choice of an element of S, f is surjective.
a) Since $a_{1} a_{n}=6$, as $6=1 \cdot 6=6 \cdot 1=2 \cdot 3=3 \cdot 2$ are the only factorizations of 6 into two distinct natural numbers (between 1 and $n=12 \geq 6$), we are counting the number of permutations such that the ordered pair $\left(a_{1}, a_{n}\right)$ is either $(1,6),(6,1),(2,3)$, or $(3,2)$ and no two cases can simultaneously happen.

So by the addition principle, the number of permutations with $a_{1} a_{n}=6$ is the sum of the number of permutations in each of the four cases. Using CP, each case has $(n-2)$! elements. Therefore there are $4((n-2)!)=4(10!)$ permutations with $a_{1} a_{n}=6$. Answer: $4(10!)$.
b) We have $a_{1}-a_{n}=n-1$ if and only if $a_{1}=n$ and $a_{n}=1$. Why? First check that $a_{1}=n$ and $a_{n}=1$ ensures that $a_{1}-a_{n}=n-1$ (just substitute and see the equation is true). Any permutation has $a_{1}-a_{n}=a_{1}+\left(-a_{n}\right) \leq n+\left(-a_{n}\right) \leq n+(-1)=n-1$. So when $a_{1}-a_{n}=n-1$ the chain of inequalities loops back to the beginning. Since \leq is antisymmetric we get that $a_{1}-a_{n}=n-a_{n}=n-1$ with the first equality giving $a_{1}=n$ and the second giving $a_{n}=1$. Now by CP, there are $(n-2)!=10!$ such permutations. Answer: 10!.
$c)$ Let S be the set of ordered pairs (b, c) of distinct $(b \neq c)$ integers in $\{1, \ldots, n\}$ such that $b+c=n+2$. Then S is the set resulting from removing the pair $\left(\frac{n}{2}+1, \frac{n}{2}+1\right)$ from $\{(2, n),(3, n-1),(4, n-2), \ldots,(n, 2)\}$ (n is even). Then S has $n-2$ elements. (If n were odd, then there would have been $n-1$ elements because we would not need to remove $\left(\frac{n}{2}+1, \frac{n}{2}+1\right)$!)
The number of permutations with $a_{1}+a_{n}=n+2$ by the addition principle is the sum of number of permutations where $\left(a_{1}, a_{n}\right)=(b, c)$ where (b, c) varies over the elements of S. By CP, whenever $(b, c) \in S$, the number of permutations where $\left(a_{1}, a_{n}\right)=(b, c)$ is $(n-2)$!. Therefore the total is the sum of $n-2$ copies of $(n-2)$! or $(n-2)(n-2)!=10(10!)$. Answer: $10(10!)$.
d) This is a special case of CP. We have $(n-2)!=10$! permutations with $a_{1}=1$ and $a_{n}=n$. Answer: 10 !.
$e)$ Let S be the set of ordered pairs (b, c) of distinct integers in $\{1, \ldots, n\}$ such that $b=2$ or $c=3$. There are $n-1$ elements of S of the form $(2, c)$ and $n-1$ elements of S of the form $(b, 3)[(2,2),(3,3) \notin S]$. All elements of S fall into one of these two categories and exactly one element, (2,3), falls into both. Then S has $(n-1)+(n-1)-1=2 n-3$ elements.

By the strategy used in part c the number of permutations with $a_{1}=2$ or $a_{2}=3$ is $(2 n-3)((n-2)!)=$ 21(10!). Answer 21(10!).
$f)$ Let S be the set of ordered pairs (b, c) of distinct integers in $\{1, \ldots, n\}$ such that $b \leq 3$ or $c \geq 3$. The number of elements of S with $b \leq 3$ is $3(n-1)$ [since $(1,1),(2,2)$, and $(3,3)$ are not in S] and similarly the number of elements of S with $c \geq 3$ is $(n-2)(n-1)$. The number of elements (b, c) of S with both $b \leq 3$ and $c \geq 3$ is $3(n-2)-1$ [since $(3,3) \notin S]$. Therefore the total number of elements of S is $3(n-1)+(n-2)(n-1)-(3(n-2)-1)=n^{2}-3 n+4$.
Therefore the number of permutations with $a_{1} \leq 3$ or $a_{2} \geq 3$ is $\left(n^{2}-3 n+4\right)((n-2)!)=112(10!)$. Answer: 112(10!).
$g)$ Take S to be the set of ordered pairs (b, c, d) of pairwise distinct $(b \neq c, c \neq d$, and $b \neq d)$ integers in $\{1, \ldots, n\}$ such that $b=2$ or $c=3$ or $d=4$. There are $(n-1)(n-2)$ elements of the form $(2, c, d)$. Similarly, there are $(n-1)(n-2)$ elements of the form $(b, 3, d)$, and $(n-1)(n-2)$ of the form $(b, c, 4)$. There are $(n-2)$ elements of the form $(2,3, d)$ and same for $(2, c, 4)$ and $(b, 3,4)$. Of course, there is only one element of S of the form $(2,3,4)$. By inclusion-exclusion principle there are $((n-1)(n-2)+(n-1)(n-2)+(n-1)(n-2))-((n-2)+(n-2)+(n-2))+1=3 n^{2}-12 n+13$ elements in S.

Therefore the number of permutations with $a_{1}=2, a_{2}=3$, or $a_{3}=4$ is $\left(3 n^{2}-12 n+13\right)((n-3)!)=301(9!)$. Answer 301(9!).

II.

a) We need $k-2$ other elements from $\{2, \ldots, n-1\}$. There are $C(n-2, k-2)$ ways to choose them. Answer: $C(10,2)$.
b) We need $k-1$ elements from $\{2, \ldots, n-1\}$. There are $C(n-2, k-1)$ ways to choose them. Answer: $C(10,3)$.
c) By the inclusion-exclusion principle, $C(n-1, k-1)+C(n-1, k-1)-C(n-2, k-2)$. Answer: $2 \cdot C(11,3)-C(10,2)$.
d) There are $C(n-5, k) k$-subsets which do not contain at least one integer ≤ 5. We subtract this from the total number of k-subsets. Answer: $C(12,4)-C(7,4)$.
$e)$ The number of k-subsets not containing an integer ≤ 3 is $C(n-3, k)$. The number of k-subsets not missing any integer ≥ 10 is $C(n-(n-9), k-(n-9))=C(9, k-(n-9))$. The number of k subsets both not missing any integer ≥ 10 and not containing an integer ≤ 3 is $C(6, k-(n-9))$. Therefore the number of k-subsets containing an integer ≤ 3 and missing at least one integer ≥ 10 is $C(n, k)-C(n-3, k)-C(9, k-(n-9))+C(6, k-(n-9))$. Answer: $C(12,4)-C(9,4)-3$.
f) We subtract subsets with fewer than 2 numbers less than or equal to 6 from the total number of k-subsets. The number of k-subsets with exactly one number less than or equal to 6 are $6 C(n-6, k-1)$ by the multiplication principle. The number of k-subsets with zero numbers less than or equal to 6 are $C(n-6, k)$. So $C(n, k)-6 C(n-6, k-1)-C(n-6, k)$ subsets have at least two numbers less than or equal to 6. Answer: $C(12,4)-6 C(6,3)-C(6,4)$
g) There are $\frac{n}{2}$ even integers in $\{1, \ldots, n\}$ (since n is even - otherwise we would round down) to choose from. Answer: $C(6,4)$.

III.

Because f maps a finite set to itself, injection, surjection, and bijection are all the same.
a) Assume $f(x)=f(y)$. Then $x+1=y+1 \bmod 12$ and $x=y \bmod 12$. Therefore since $0 \leq x, y<12$, $x=y$. Answer: Injection, surjection, bijection.
b) Assume $f(x)=f(y)$. Then $5 x=5 y \bmod 12$ and so 12 divides $5(x-y)$. Since 5 and 12 have no common factors, by the fundamental theorem of arithmetic, 12 must divide $x-y$. Thus $x=y \bmod 12$. We conclude like in part a that $x=y$. Answer: Injection, surjection, bijection.
c) It is not injective because $0^{2}=6^{2} \bmod 12$. Answer: Neither.
d) It is not injective because $0^{3}=6^{3} \bmod 12$. Answer: Neither.
e) It is not surjective because since powers of 5 are always odd and thus not divisible by 12 . That is there is no x for which $5^{x}=0 \bmod 12$ which is equivalent to $f(x)=0$. Answer: Neither.
f) Observe that $f(2)=3=f(4)$. Answer: Neither
g) Observe that $f(3)=0=f(6)$. Answer: Neither.

