## HOMEWORK 1 (MATH 61, SPRING 2017)

Solve: RJ, Sec. 2.2 Ex 28, 29, Sec. 2.4 Ex 2, 3, 6, 9, Sec 3.2 Ex 7, 9, 13, 14. 2.2
28. Suppose that there exist positive integers $m, n$ such that $m^{3}+2 n^{2}=36$. Then $m^{3}<36$, and thus $m<(36)^{\frac{1}{3}}<4$. Since both $2 n^{2}$ and 36 are even, $m^{3}$ must be even, so is $m$. Thus, $m=2$. But this implies $n^{2}=36-2^{3}=28$ which is not a square of any positive integer, which is a contradiction.
29. Suppose that there exist positive integers $m, n$ such that $2 m^{2}+4 n^{2}-1=2(m+n)$. Then the left hand side must be odd, but the right hand side is even.
2.4
2. Base case: $1 \cdot 2=2=\frac{1 \cdot 2 \cdot 3}{3}$.

Inductive step: Suppose $1 \cdot 2+2 \cdot 3+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$ for $n \geq 1$. We want to show $1 \cdot 2+2 \cdot 3+\ldots+(n+1)(n+2)=\frac{(n+1)(n+2)(n+3)}{3}$. By the inductive assumption, we have

$$
\begin{aligned}
1 \cdot 2+2 \cdot 3+\ldots+(n+1)(n+2) & =\frac{n(n+1)(n+2)}{3}+(n+1)(n+2) \\
& =(n+1)(n+2)\left(\frac{n}{3}+1\right) \\
& =\frac{(n+1)(n+2)(n+3)}{3} .
\end{aligned}
$$

3. Base case: $1(1!)=1=2!? 1$.

Inductive step: Suppose $1(1!)+2(2!)+\ldots+n(n!)=(n+1)!-1$ for $n \geq 1$. We want to show $1(1!)+2(2!)+\ldots+(n+1)((n+1)!)=(n+2)!-1$. By the inductive assumption,

$$
\begin{aligned}
1(1!)+2(2!)+\ldots+(n+1)((n+1)!) & =(n+1)!-1+(n+1)((n+1)!) \\
& =(n+1+1)((n+1)!)-1=(n+2)!-1 .
\end{aligned}
$$

6. Base case: $1^{3}=1=\left(\frac{1 \cdot 2}{2}\right)^{2}$.

Inductive step: Suppose $1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for $n \geq 1$. We want to show $1^{3}+2^{3}+\ldots+(n+1)^{3}=\left(\frac{(n+1)(n+2)}{2}\right)^{2}$. By the inductive assumption,

$$
\begin{aligned}
1^{3}+2^{3}+\ldots+(n+1)^{3} & =\left(\frac{n(n+1)}{2}\right)^{2}+(n+1)^{3} \\
& =(n+1)^{2}\left(\frac{n^{2}}{4}+(n+1)\right) \\
& =(n+1)^{2}\left(\frac{n^{2}+4 n+4}{4}\right) \\
& =(n+1)^{2}\left(\frac{n+2}{2}\right)^{2}=\left(\frac{(n+1)(n+2)}{2}\right)^{2} .
\end{aligned}
$$

9. Base case: $\frac{1}{2^{2}-1}=\frac{1}{3}=\frac{3}{4}-\frac{1}{2(2)}-\frac{1}{2(3)}$.

Inductive step: Suppose $\frac{1}{2^{2}-1}+\frac{1}{3^{2}-1}+\ldots+\frac{1}{(n+1)^{2}-1}=\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}$ for $n \geq 1$.

We want to show $\frac{1}{2^{2}-1}+\frac{1}{3^{2}-1}+\ldots+\frac{1}{(n+2)^{2}-1}=\frac{3}{4}-\frac{1}{2(n+2)}-\frac{1}{2(n+3)}$. By the inductive assumption,

$$
\begin{aligned}
\frac{1}{2^{2}-1}+\frac{1}{3^{2}-1}+\ldots+\frac{1}{(n+2)^{2}-1} & =\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}+\frac{1}{(n+2)^{2}-1} \\
& =\frac{3}{4}-\frac{1}{2(n+2)}+\frac{1}{n^{2}+4 n+3}-\frac{1}{2(n+1)} \\
& =\frac{3}{4}-\frac{1}{2(n+2)}+\frac{1}{(n+3)(n+1)}-\frac{1}{2(n+1)} \\
& =\frac{3}{4}-\frac{1}{2(n+2)}+\frac{1}{n+1}\left(\frac{1}{n+3}-\frac{1}{2}\right) \\
& =\frac{3}{4}-\frac{1}{2(n+2)}+\frac{1}{n+1} \cdot \frac{2-(n+3)}{2(n+3)} \\
& =\frac{3}{4}-\frac{1}{2(n+2)}-\frac{1}{n+1} \cdot \frac{n+1}{2(n+3)} \\
& =\frac{3}{4}-\frac{1}{2(n+2)}-\frac{1}{2(n+3)} .
\end{aligned}
$$

## 3.2

7. $t_{2077}=2(2077)-1=4153$.
8. Note $t_{n}$ is the $n$th odd number. The sum of the first $n$ odd numbers is $n^{2}$. So,
9. Yes.
10. No.
I. a) In the base case $n=1$, we interpret the left hand side as having no factors since the first factor in the expression is $\left(1-\frac{1}{2^{2}}\right)$ which is the last factor in the case $n=2$. This is a common mathematical convention. The product of no factors is by convention 1. The right hand side in the case $n=1$ is also $\frac{1+1}{2 \cdot 1}=1$, as needed.

In the induction step we assume $\left(1-\frac{1}{2^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$. Then,

$$
\begin{aligned}
\left(1-\frac{1}{2^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)\left(1-\frac{1}{(n+1)^{2}}\right) & =\left[\left(1-\frac{1}{2^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)\right]\left(1-\frac{1}{(n+1)^{2}}\right) \\
& =\frac{n+1}{2 n}\left(1-\frac{1}{(n+1)^{2}}\right) \\
& =\frac{n+1}{2 n} \cdot \frac{(n+1)^{2}-1}{(n+1)^{2}} \\
& =\frac{n+1}{2 n} \cdot \frac{((n+1)-1)((n+1)+1)}{(n+1)^{2}} \\
& =\frac{(n+1)+1}{2(n+1)}
\end{aligned}
$$

using the induction hypothesis in the second equality.
b) In the base case $n=1$, the left hand side, $1^{3}=1$ and the right hand side, $(1)^{2}=1$ agree. In the induction step we assume $1^{3}+\ldots+n^{3}=(1+\ldots+n)^{2}$ for a particular natural number $n$. Recall from class that for every natural number $k, 1+2+\ldots+k=\frac{k(k+1)}{2}$. Then using this fact for $k=n$ in the third equality and $k=n+1$ in the fifth equality as well as the induction
hypothesis in the second equality,

$$
\begin{aligned}
1^{3}+\ldots+n^{3}+(n+1)^{3} & =\left[1^{3}+\ldots+n^{3}\right]+(n+1)^{3} \\
& =(1+2+\ldots+n)^{2}+(n+1)^{3} \\
& =\left(\frac{n(n+1)}{2}\right)^{2}+(n+1)^{3} \\
& =(n+1)^{2}\left(\frac{n^{2}}{4}+n+1\right) \\
& =(n+1)^{2}\left(\frac{n^{2}+4 n+4}{4}\right) \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4} \\
& =\left(\frac{(n+1)(n+2)}{2}\right)^{2} .
\end{aligned}
$$

II. [One of many solutions.] Let $a_{1}=a_{2}=1$ and $a_{n+1}=a_{n}-a_{n-1}$. This defines a unique sequence $\left\{a_{n}\right\}$. Then $a_{3}=0, a_{4}=-1, a_{5}=-1, a_{6}=0, a_{7}=1$, and $a_{8}=1$. So if we define another sequence $b_{n}:=a_{n+6}$, then $b_{1}=a_{7}=b_{2}=a_{8}=1$ and $b_{n+1}=a_{n+7}=a_{n+6}-a_{n+5}=$ $b_{n}-b_{n-1}$ (when $n>1$ ). Therefore the sequence $\left\{b_{n}\right\}$ meets the defining condition of the $\left\{a_{n}\right\}$ and so $\left\{b_{n}\right\}=\left\{a_{n}\right\}$. This means every natural number $n$, we have $a_{n+6}=b_{n}=a_{n}$.
(The following can be applied to all repeating sequences. Replace 6 with the period) We can show by induction on a natural number $q$ that for any natural number $r$ we have $a_{r+6 q}=a_{r}$. We have already proven the first paragraph the base case. In the induction step we assume $a_{r+6 q}=a_{r}$ and using this and the base case for $r+6 q$ we have $a_{r+6(q+1)}=a_{(r+6 q)+6}=a_{r+6 q}=$ $a_{r}$. This completes the induction.

Now for any natural number $n$, we can divide $n$ by 6 and use this to write $n=r+6 q$ where $r \in\{1,2,3,4,5,6\}$ ( $r$ is the remainder when dividing $n$ by 6 unless the remainder is 0 , in which case $r=6$ ). Then $a_{n}=a_{r} \in\{1,0,-1\}$ since we computed the first six terms of the sequence. In particular, $-3 \leq a_{n} \leq 3$.
III. Find closed formulas for elements in the following sequences:
a) $1,3,5,7,9,11, \ldots \Longrightarrow a_{n}=2 n-1$
b) $1,-4,10,-20,35,-56 \ldots \Longrightarrow b_{n}=(-1)^{n+1} \frac{n(n+1)(n+2)}{6}$
c) $1,3 / 2,6,3 / 24,120,3 / 720, \ldots \Longrightarrow c_{n}=\left(2+(-1)^{n}\right) n!!^{(-1)^{n+1}}$
d) $1 / 4,-4 / 9,9 / 16,-16 / 25,25 / 36, \ldots \Longrightarrow d_{n}=(-1)^{n+1}\left(\frac{n}{n+1}\right)^{2}$
e) $1,1 / 5,1 / 21,1 / 85,1 / 341,1 / 1365, \ldots \Longrightarrow e_{n}=\frac{3}{4^{n}-1}$
IV. For the following sequences, Compute the first 5 elements. Then decide whether they are or are not increasing, decreasing, nonincreasing, and nondecreasing.

$$
a_{n}=n-3^{n}
$$

$-2,-7,-24,-77,-238$. decreasing and nonincreasing.

$$
b_{n}=n+\frac{1}{n}
$$

$2, \frac{5}{2}, \frac{10}{3}, \frac{17}{4}, \frac{26}{5}$ increasing and nondecreasing.

$$
c_{n}=3-\frac{1}{n}
$$

$2, \frac{5}{2}, \frac{8}{3}, \frac{11}{4}, \frac{14}{5}$. decreasing and nonincreasing.

$$
d_{n}=\frac{(-1)^{n}}{n^{2}}
$$

$-1, \frac{1}{4},-\frac{1}{9}, \frac{1}{16},-\frac{1}{25}$. None of them.

$$
e_{n}=\frac{2^{n}+3^{n}}{13 n^{2}}
$$

$\frac{5}{13}, \frac{1}{4}, \frac{35}{117}, \frac{97}{208}, \frac{275}{325}$ None of them (However is increasing and nondecreasing from the second term onwards).

