MIDTERM 2 (MATH 61, SPRING 2015)

Your Name:

UCLA id: \qquad

Math 61 Section:

Date:

The rules:

You MUST simplify completely and BOX all answers with an INK PEN.
You are allowed to use only this paper and pen/pencil. No calculators.
No books, no notebooks, no web access. You MUST write your name and UCLA id.
Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught writing after time get automatic 10% score deduction.

Total:
(out of 100)

Problem 1. (20 points)
Compute the number of (shortest) grid walks from $(0,0)$ to $(9,9)$ which:
a) do not go through any of the other diagonal points $(1,1),(2,2), \ldots,(8,8)$
b) stay on or above $y=x-1$ diagonal
c) stay on or above $y=x$ diagonal AND do not go through $(6,6)$
d) stay on or above $y=x$ diagonal AND on or below $y=x+1$ diagonal.

Note: You can use the formula for Catalan numbers or write the answer in terms of C_{n} 's.

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Problem 2. (20 points)
Compute the number of subgraphs of G isomorphic to H, where
a) $G=K_{7,9}, H=C_{4}$
b) $G=K_{7,9}, H=P_{4}$
c) $G=C_{9}, H=P_{4}$
d) $G=K_{9}, H=K_{2,3}$

Problem 3. (15 points)
Let $a_{1}=2, a_{2}=7, a_{n+1}=a_{n}+2 a_{n-1}$. Solve this LHRR and find a closed formula for a_{n}.

Problem 4. (15 points)
Decide whether the following pairs of graphs on 8 vertices are isomorphic or non-isomorphic.
a)

b)

Important: In case of isomorphism, you must write a bijection in the figure above (in ink). No need for further arguments. In case non-isomorphism, you must say so and present an argument why two graphs are not isomorphic.

Problem 5. (30 points, 2 points each) TRUE or FALSE?
Circle correct answers with ink. No explanation is required or will be considered.

T F (1) Isomorphic graphs have the same number of edges.
T F (2) Isomorphic graphs have the same number of connected components.
T F (3) Isomorphic graphs have the same number of 4-cycles.
$\mathbf{T} \quad \mathbf{F} \quad(4) \quad F_{n} \leq C_{n}$ for all integer n.
T \mathbf{F} (5) Sequence $(3,3,3,3,3)$ is a valid score of a simple graph.
T \mathbf{F} (6) Sequence (4, 4, 4, 4, 2) is a valid score of a simple graph.
T $\quad \mathbf{F}$ (7) Sequence (4, 4, 4, 2, 2) is a valid score of a simple graph.
T $\quad \mathbf{F}$ (8) Sequence (4, 4, 2, 2, 2) is a valid score of a simple graph.
T $\quad \mathbf{F} \quad(9)$ Sequence $(2,2,2,0,0)$ is a valid score of a simple graph.
T \quad (10) Graph C_{8} is a subgraph of $K_{7,7}$.

T $\quad \mathbf{F}$ (11) Graph C_{8} is a subgraph of $K_{9,3}$.
T $\quad \mathbf{F} \quad$ (12) Graph P_{8} is a subgraph of $K_{9,3}$.
T $\quad \mathbf{F} \quad(13)$ Graph K_{4} is a subgraph of $K_{7,7}$.
T \quad F (14) Graph K_{9} has 72 edges.

T $\quad \mathbf{F}$ (15) Catalan numbers modulo 2 are periodic with period 6.

