MIDTERM 1 (MATH 61, SPRING 2015)

Your Name:

\qquad

UCLA id: \qquad

Math 61 Section:

Date:

The rules:

You MUST simplify completely and BOX all answers with an INK PEN.
You are allowed to use only this paper and pen/pencil. No calculators.
No books, no notebooks, no web access. You MUST write your name and UCLA id.
Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught writing after time get automatic 10% score deduction.

Problem 1. (20 points)
Compute the number of permutations $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $\{1,2, \ldots, 9\}$ such that:
a) $x_{1}=2$,
b) $x_{1} \cdot x_{2} \cdot x_{3}=6$,
c) $x_{1}=x_{2}=x_{3} \bmod 7$,
d) $x_{1}<x_{2}<5$.

Problem 2. (20 points)
Let $X=\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ be the set of all integers. For each of these relations R, decide whether they are reflexive, symmetric or transitive (or neither).
a) $x R y$ if and only if $|x|=|y|$.
b) $x R y$ if and only if $x+2 y=0 \bmod 3$.
c) $x R y$ if and only if $x^{2}+2 y^{2}=0 \bmod 3$.
d) $x R y$ if and only if $x^{3}+122 y^{3}=0 \bmod 3$.

Problem 3. (15 points)
Let $A=(0,0), B=(10,10)$. Find the number of (shortest) grid walks γ from A to B, such that:
a) γ never visits points $(0,10),(10,1),(5,5)$.
b) γ visits all points $(1,1),(2,2),(3,3), \ldots,(9,9)$.
c) γ visits points $(5,0)$ and $(5,10)$, but not $(5,5)$.

Problem 4. (15 points)
Recall the Fibonacci sequence: $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{6}=8$, etc.
Prove that $F_{n} \leq 2^{n-1}$.

Problem 5. (30 points, 2 points each) TRUE or FALSE?
Circle correct answers with ink. No explanation is required or will be considered.
$\mathbf{T} \quad \mathbf{F}$ (1) The number of functions from $\{A, B, C, D\}$ to $\{1,2,3\}$ is equal to 4^{3}.
T F (2) The sequence $10,21,32,43, \ldots$ is increasing.
$\mathbf{T} \quad \mathbf{F} \quad(3)$ The sequence $2 / 1,3 / 2,4 / 3,5 / 4$ is non-increasing.
T F (4) There are 20 anagrams of the word $B U B U B$.
T F (5) There are more anagrams of the words $A A A A C C C$ which begin with A than with C.

T $\quad \mathbf{F}$ (6) There are infinitely many Fibonacci numbers $=1 \bmod 3$.

T $\quad \mathbf{F} \quad(7) \quad$ There are infinitely many binomial coefficients $\binom{n}{k}=1 \bmod 17$.
T F (8) Each of the 14 students wrote on a paper 10 distinct numbers, from the set $\{1,2, \ldots, 100\}$. Then there are two students who have at least 2 numbers in common on their lists.

T \mathbf{F} (9) The probability that a random 10 -subset of $\{1,2, \ldots, 19\}$ contains 10 is equal to $1 / 2$.

T $\quad \mathbf{F} \quad(10)$ For every two subsets $A, B \subset U$, we must have $|A \backslash B|=|B \backslash A|$.
T $\quad \mathbf{F}$ (11) For every two subsets $A, B \subset U$, we must have $|A \cup B| \geq|\bar{B}|$
T $\quad \mathbf{F}$ (12) Every surjection that is also a bijection must be also an injection.
T F (13) Every surjection that is also an injection must be also a bijection.
T $\quad \mathbf{F} \quad(14)$ Let \mathcal{A} be the set of 3 -subsets of $[9]=\{1,2, \ldots, 9\}$. Similarly, let \mathcal{B} be the set of 6 -subsets of [9]. Consider a map $f: A \rightarrow[9] \backslash A$. Then f is a bijection from \mathcal{A} to \mathcal{B}.

T F (15) The pigeon hole principle was proved in class by induction.

