MIDTERM 1 (MATH 61, SPRING 2015)

V NT	
Your Name:	
TOUL TIONS	

UCLA id:

Math 61 Section:

Date:

The rules:

You MUST simplify completely and BOX all answers with an **INK PEN**. You are allowed to use only this paper and pen/pencil. No calculators. No books, no notebooks, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught writing after time get automatic 10% score deduction.

Problem 1. (20 points)

Compute the number of permutations (x_1, x_2, \ldots, x_n) of $\{1, 2, \ldots, 9\}$ such that:

- a) $x_1 = 2$,
- $b) \quad x_1 \cdot x_2 \cdot x_3 = 6,$
- c) $x_1 = x_2 = x_3 \mod 7$,
- d) $x_1 < x_2 < 5.$

Problem 2. (20 points)

Let $X = \mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ be the set of all integers. For each of these relations R, decide whether they are reflexive, symmetric or transitive (or neither).

- a) xRy if and only if |x| = |y|.
- b) xRy if and only if $x + 2y = 0 \mod 3$.
- c) xRy if and only if $x^2 + 2y^2 = 0 \mod 3$.
- d) xRy if and only if $x^3 + 122y^3 = 0 \mod 3$.

Problem 3. (15 points)

Let A = (0,0), B = (10,10). Find the number of (shortest) grid walks γ from A to B, such that:

- a) γ never visits points (0, 10), (10, 1), (5, 5).
- b) γ visits all points (1, 1), (2, 2), (3, 3), ..., (9, 9).
- c) γ visits points (5,0) and (5,10), but not (5,5).

Problem 4. (15 points)

Recall the Fibonacci sequence: $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8$, etc. Prove that $F_n \leq 2^{n-1}$.

Problem 5. (30 points, 2 points each) TRUE or FALSE?

Circle correct answers with ink. No explanation is required or will be considered.

- **T F** (1) The number of functions from $\{A, B, C, D\}$ to $\{1, 2, 3\}$ is equal to 4^3 .
- **T F** (2) The sequence $10, 21, 32, 43, \ldots$ is increasing.
- **T F** (3) The sequence 2/1, 3/2, 4/3, 5/4 is non-increasing.
- **T F** (4) There are 20 anagrams of the word BUBUB.
- **T F** (5) There are more anagrams of the words AAAACCC which begin with A than with C.
- **T F** (6) There are infinitely many Fibonacci numbers $= 1 \mod 3$.
- **T F** (7) There are infinitely many binomial coefficients $\binom{n}{k} = 1 \mod 17$.
- **T F** (8) Each of the 14 students wrote on a paper 10 distinct numbers, from the set $\{1, 2, ..., 100\}$. Then there are two students who have at least 2 numbers in common on their lists.
- **T F** (9) The probability that a random 10-subset of $\{1, 2, ..., 19\}$ contains 10 is equal to 1/2.
- **T F** (10) For every two subsets $A, B \subset U$, we must have $|A \setminus B| = |B \setminus A|$.
- **T F** (11) For every two subsets $A, B \subset U$, we must have $|A \cup B| \ge |\overline{B}|$
- $\mathbf{T} = \mathbf{F}$ (12) Every surjection that is also a bijection must be also an injection.
- $\mathbf{T} = \mathbf{F}$ (13) Every surjection that is also an injection must be also a bijection.
- **T F** (14) Let \mathcal{A} be the set of 3-subsets of $[9] = \{1, 2, ..., 9\}$. Similarly, let \mathcal{B} be the set of 6-subsets of [9]. Consider a map $f : \mathcal{A} \to [9] \setminus \mathcal{A}$. Then f is a bijection from \mathcal{A} to \mathcal{B} .
- $\mathbf{T} = \mathbf{F}$ (15) The pigeon hole principle was proved in class by induction.