MIDTERM 1 (MATH 61, SPRING 2015)

Your Name:	
UCLA id:	
Math 61 Sec	tion:
Date:	

The rules:

You MUST simplify completely and BOX all answers with an **INK PEN**. You are allowed to use only this paper and pen/pencil. No calculators. No books, no notebooks, no web access. You MUST write your name and UCLA id. Except for the last problem, you MUST write out your logical reasoning and/or proof in full. You have exactly 50 minutes.

Warning: those caught writing after time get automatic 10% score deduction.

Points:	
1	
2	
3	
4	
5	
Total:	(out of 100)

2

Problem 1. (20 points)

Compute the number of permutations $(x_1, x_2, ..., x_n)$ of $\{1, 2, ..., 9\}$ such that:

- a) $x_1 = 2$,
- $b) \quad x_1 \cdot x_2 \cdot x_3 = 6,$
- c) $x_1 = x_2 = x_3 \mod 7$,
- d) $x_1 < x_2 < 5$.

Solutions.

- a) Since there are 8 other elements, the number should be 8!.
- b) The first three numbers should be 1, 2, 3 in some order, so the number of permutation should be 3!6!.
- c) Since we don't have three numbers from the set such that they are all the same mod 7, the answer should be 0.
- d) If $x_2 = 4$, $3 \cdot 7!$. If $x_2 = 3$, $2 \cdot 7!$. If $x_2 = 2$, $3 \cdot 7!$. So the answer is the sum which is $6 \cdot 7!$.

Problem 2. (20 points)

Let $X = \mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ be the set of all integers. For each of these relations R, decide whether they are reflexive, symmetric or transitive (or neither).

- a) xRy if and only if |x| = |y|.
- b) xRy if and only if $x + 2y = 0 \mod 3$.
- c) xRy if and only if $x^2 + 2y^2 = 0 \mod 3$.
- d) xRy if and only if $x^3 + 122y^3 = 0 \mod 3$.

Solutions.

- a) |x| = |x| for all x, so reflexive. $xRy \iff |x| = |y| \iff |y| = |x| \iff yRx$, so symmetric. If |x| = |y| and |y| = |z|, then |x| = |z|, so transitive.
- b) $x+2x=3x=0 \mod 3$. So reflextive $xRy \iff x+2y=0 \mod 3 \iff x=y \mod 3 \iff y+2x=0 \mod 3 \iff yRx$. So symmetric.

If xRy and yRz, then $x=y \mod 3$, and $y=z \mod 3$. So $x=z \mod 3$, which means the relation is transitive.

- c) Similar to the previous problem, the relation is reflexive, symmetric and transitive.
- d) Similar to the previous two problems, the relation is reflextive, symmetric and transitive.

4

Problem 3. (15 points)

Let $A=(0,0),\,B=(10,10).$ Find the number of (shortest) grid walks γ from A to B, such that:

- a) γ never visits points (0, 10), (10, 1), (5, 5).
- b) γ visits all points $(1,1), (2,2), (3,3), \ldots, (9,9)$.
- c) γ visits points (5,0) and (5,10), but not (5,5).

Solutions.

$$a) \ \binom{20}{10} - \binom{10}{0}\binom{10}{10} - \binom{11}{10}\binom{9}{0} - \binom{10}{5}\binom{10}{5}.$$

- $b) 2^{10}$.
- c) Since we can only go to the left or up on a grid walk, every grid walk that visits (5,0) and (5,10) must also visit (5,5). So the answer should be 0.

Problem 4. (15 points)

Recall the Fibonacci sequence: $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8,$ etc.

Prove that $F_n \leq 2^{n-1}$.

Solution:

Base step:

$$F_1 = 1 \le 2^0$$
; $F_2 = 1 \le 2^1$.

Find step: $F_1 = 1 \le 2^0$; $F_2 = 1 \le 2^1$. Induction step: Assume that $F_{n-1} \le 2^{n-2}$ and $F_n \le 2^{n-1}$, then $F_{n+1} = F_n + F_{n-1} \le 2^{n-1} + 2^{n-2} \le 2^n$.

Problem 5. (30 points, 2 points each) TRUE or FALSE?

Circle correct answers with ink. No explanation is required or will be considered.

- **T F** (1) The number of functions from $\{A, B, C, D\}$ to $\{1, 2, 3\}$ is equal to 4^3 .
- \mathbf{T} \mathbf{F} (2) The sequence $10, 21, 32, 43, \dots$ is increasing.
- \mathbf{T} \mathbf{F} (3) The sequence 2/1, 3/2, 4/3, 5/4 is non-increasing.
- \mathbf{T} \mathbf{F} (4) There are 20 anagrams of the word BUBUB.
- **T F** (5) There are more anagrams of the words AAAACCC which begin with A than with C.
- \mathbf{T} \mathbf{F} (6) There are infinitely many Fibonacci numbers = 1 mod 3.
- **T F** (7) There are infinitely many binomial coefficients $\binom{n}{k} = 1 \mod 17$.
- **T F** (8) Each of the 14 students wrote on a paper 10 distinct numbers, from the set $\{1, 2, ..., 100\}$. Then there are two students who have at least 2 numbers in common on their lists.
- **T F** (9) The probability that a random 10-subset of $\{1, 2, ..., 19\}$ contains 10 is equal to 1/2.
- **T F** (10) For every two subsets $A, B \subset U$, we must have $|A \setminus B| = |B \setminus A|$.
- **T F** (11) For every two subsets $A, B \subset U$, we must have $|A \cup B| \ge |\overline{B}|$
- **T F** (12) Every surjection that is also a bijection must be also an injection.
- **T F** (13) Every surjection that is also an injection must be also a bijection.
- **T F** (14) Let \mathcal{A} be the set of 3-subsets of $[9] = \{1, 2, ..., 9\}$. Similarly, let \mathcal{B} be the set of 6-subsets of [9]. Consider a map $f: A \to [9] \setminus A$. Then f is a bijection from \mathcal{A} to \mathcal{B} .
- **T F** (15) The pigeon hole principle was proved in class by induction.

Solutions: FTTFTTTFFFTTTF.