The shape of random combinatorial objects

Igor Pak, UCLA

Math 206

January 20, 2023

Old Problem:

Find nice bijections between combinatorial objects.
Specifically, between 200+ counted by the Catalan numbers.

New Problem:

Explain why some objects have super nice (canonical) bijections while others do not (and what this all even means).

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{4^{n}}{\sqrt{\pi n^{3}}}\left(1-\frac{9}{8 n}+\frac{145}{128 n^{2}}-\ldots\right)
$$

1. Classical Catalan structures:

1) $C_{n}=$ number of triangulations of $(n+2)$-gon (Euler, 1756)

2) $C_{n}=$ number of non-associative products of $(n+1)$ numbers (Catalan, 1836)

3) $C_{n}=$ number of binary trees on $(2 n+1)$ vertices
4) $C_{n}=$ number of plane trees with $(n+1)$ vertices

5) $C_{n}=$ number of grid walks of length $2 n$
i.e. lattice paths $(0,0) \rightarrow(n, n)$ below $y=x$ line.

Canonical bijections:

Triangulations	\longleftrightarrow	Binary trees
Binary trees	\longleftrightarrow	Non-associative products
Binary trees	\longleftrightarrow	Plane trees
Plane trees	\longleftrightarrow	Dyck paths

These can be extremely useful for studying asymptotics of combinatorial statistics and more generally the shape of combinatorial objects.

2. Selected asymptotic results:

Theorem (Aldous, 1991; DFHNS, 1999)
The p.d.f. of the maximal chord-length in a random triangulation of regular n-gon

$$
\text { converges to } \quad \frac{3 x-1}{\pi x^{2}(1-x)^{2} \sqrt{1-2 x}}, \quad \frac{1}{3}<x<\frac{1}{2}, \quad \text { as } n \rightarrow \infty .
$$

Theorem (DFHNS, 1999)
$\Delta_{n}=$ maximal degree of a random triangulation of n-gon. Then for all $c>0$

$$
P\left(\left|\Delta_{n}-\log _{2} n\right|<c \log \log n\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty .
$$

DFHNS = Devroye, Flajolet, Hurtado, Noy and Steiger.

Theorem: Let δ_{n} be the degree of a root in a random plane tree with n vertices.

$$
P\left(\delta_{n}=r\right) \rightarrow \frac{r}{2^{r+1}}, \quad E[\tau] \rightarrow 3 \quad \text { as } n \rightarrow \infty
$$

Theorem: Let h_{n} height of a random plane tree with n vertices,
m_{n} the height of a random Dyck path of length $2 n$. Then:

$$
h_{n}, m_{n} \sim \sqrt{\frac{\pi n}{2}}
$$

General References: Flajolet \& Sedgewick, Analytic Combinatorics, 2009.
M. Drmota, Random Trees, 2009.

3. Pattern avoidance:

Permutation $\sigma \in S_{n}$ contains pattern $\omega \in S_{n}$ if matrix $M(\sigma)$ contains $M(\omega)$ as a submatrix. Otherwise, σ avoids ω.

Example

$\sigma=(2,4,5,1,3,6)$ contains 132 but not 321 .

$$
M(\sigma)=\left(\begin{array}{cccccc}
0 & (1) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & (1) & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & (1) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \text { contains }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Patterns of length 3

$s_{n}(\omega):=$ number of permutations $\sigma \in S_{n}$ avoiding ω
Theorem (MacMahon, 1915; Knuth, 1968)
$s_{n}(\omega)=C_{n}$ for all $\omega \in S_{3}$.

Two Observations:

$s_{n}(123)=s(321), s_{n}(132)=s(231)=s_{n}(312)=s(213)$ via symmetries
[Kitaev]: Nine different bijections between 123- and 132-avoiding permutations.

Question: Can it be true that all nine and nice? How about canonical?
My Answer: No canonical bijection is possible. Here is why...

Simulations by Madras and Pehlivan

Monte Carlo simulation 1

Figure: Randomly generated 312 avoiding permutation with $\mathrm{N}=100$

Monte Carlo simulation 2

Figure: Randomly generated 312 avoiding permutation with $\mathrm{N}=200$

4. Shape of random pattern avoiding permutations

$$
P_{n}(i, j):=\frac{1}{C_{n}} \sum_{\sigma} M(\sigma)_{i j},
$$

where the sum is over all 123 -avoiding permutations.

$$
Q_{n}(i, j):=\frac{1}{C_{n}} \sum_{\sigma} M(\sigma)_{i j},
$$

where the sum is over all 132-avoiding permutations.
Main Question: What do $P_{n}(*, *)$ and $Q_{n}(*, *)$ look like, as $n \rightarrow \infty$?

Shape of random 123-avoiding permutations (surface)

Surface $P_{250}(i, j)$ and the same surface in greater detail.

Shape of random 132-avoiding permutations (surface)

Surface $Q_{250}(i, j)$ and the same surface in greater detail.

Diagonal of $P_{n}(*, *)$ in details

Main Theorem for $P_{n}(*, *)$, [Miner-P.]

$$
\begin{gathered}
P_{n}(a n, b n)<\varepsilon^{n}, \quad a+b \neq 1, \quad \varepsilon=\varepsilon(a, b), \quad 0<\varepsilon<1 \\
P_{n}\left(a n-c n^{\alpha},(1-a) n-c n^{\alpha}\right)<\varepsilon^{n^{2 \alpha-1}}, \quad \frac{1}{2}<\alpha<1, \quad \varepsilon=\varepsilon(a, b, \alpha), \quad 0<\varepsilon<1 \\
P_{n}\left(a n-c n^{\alpha},(1-a) n-c n^{\alpha}\right) \sim \eta(a, c) \varkappa(a, c) \frac{1}{\sqrt{n}}, \quad \alpha=\frac{1}{2}, \quad c \neq 0 \\
P_{n}\left(a n-c n^{\alpha},(1-a) n-c n^{\alpha}\right) \sim \eta(a, c) \frac{1}{n^{3 / 2-2 \alpha}}, \quad 0<\alpha<\frac{1}{2}, \quad c \neq 0
\end{gathered}
$$

where

$$
\eta(a, c)=\frac{c^{2}}{\sqrt{\pi}(a(1-a))^{\frac{3}{2}}} \quad \text { and } \quad \varkappa(a, c)=\exp \left[\frac{-c^{2}}{a(1-a)}\right]
$$

Diagonal of $Q_{n}(*, *)$ vs. $P_{n}(*, *)$

Main Theorem for $Q_{n}(*, *)$, macro picture:

$$
\begin{gathered}
Q_{n}(a n, b n)<\varepsilon^{n}, \quad 0 \leq a+b<1, \quad \varepsilon=\varepsilon(a, b), \quad 0<\varepsilon<1 \\
Q_{n}(a n, b n) \sim v(a, b) \frac{1}{n^{3 / 2}}, \quad 1<a+b<2 \\
Q_{n}(n, n) \sim \frac{1}{4}
\end{gathered}
$$

where

$$
v(a, b)=\frac{1}{\sqrt{32 \pi}(2-a-b)^{\frac{3}{2}}(1-a-b)^{\frac{3}{2}}}
$$

Main Theorem for $Q_{n}(*, *)$, micro picture:

$$
\begin{gathered}
Q_{n}\left(a n-c n^{\alpha},(1-a) n-c n^{\alpha}\right)<\varepsilon^{n^{2 \alpha-1}}, \quad \frac{1}{2}<\alpha<1, \quad \varepsilon=\varepsilon(a, b, \alpha), \quad 0<\varepsilon<1, c>0 \\
Q_{n}\left(a n-c n^{\alpha},(1-a) n-c n^{\alpha}\right) \sim z(a) \frac{1}{n^{3 / 2-2 \alpha}}, \quad \frac{3}{8}<\alpha<\frac{1}{2}, \quad c>0 \\
Q_{n}\left(a n-c n^{\alpha},(1-a) n-c n^{\alpha}\right) \sim z(a) \frac{1}{n^{3 / 4}}, \quad 0<\alpha<\frac{3}{8} \\
Q_{n}\left(a n+c n^{\alpha},(1-a) n+c n^{\alpha}\right) \sim y(a, c) \frac{1}{n^{3 / 4}}, \quad \frac{3}{8}<\alpha<\frac{1}{2}, \quad c>0 \\
Q_{n}\left(a n+c n^{\alpha},(1-a) n+c n^{\alpha}\right) \sim w(c) \frac{1}{n^{3 \alpha / 2}}, \quad \frac{1}{2}<\alpha<1, c>0 \\
Q_{n}\left(n-c n^{\alpha}, n-c n^{\alpha}\right) \sim w(c) \frac{1}{n^{3 \alpha / 2}}, \quad 0<\alpha<1, \quad c>0
\end{gathered}
$$

where

$$
w(c)=\frac{1}{16 c^{\frac{3}{2}} \sqrt{\pi}}, \quad y(a, c)=\left(1+\frac{\zeta\left(\frac{3}{2}\right)}{\sqrt{\pi}}\right) \frac{c^{2}}{\sqrt{\pi} a^{\frac{3}{2}}(1-a)^{\frac{3}{2}}}, \quad z(a)=\frac{\Gamma\left(\frac{3}{4}\right)}{2^{\frac{9}{4}} \pi a^{\frac{3}{4}}(1-a)^{\frac{3}{4}}}
$$

Proof idea:

Lemma 1. For $j+k \leq n+1$,

$$
\begin{gathered}
P_{n}(j, k)=B(n-k+1, j) B(n-j+1, k), \text { where } \\
B(n, k)=\frac{n-k+1}{n+k-1}\binom{n+k-1}{n} \text { are the ballot numbers }
\end{gathered}
$$

Lemma 2.

$$
Q_{n}(j, k)=\sum_{r=\max \{0, j+k-n-1\}}^{\min \{j, k\}-1} B(n-j+1, k-r) B(n-k+1, j-r) C_{r}
$$

Proof of the Main Theorem $=$ Lemmas + Stirling's formula + [details]

5. Connections to Probability:

Random Dyck paths \longrightarrow Brownian excursion
This explains everything!

Hint:

(1) heights in Dyck paths \longleftrightarrow distances to anti-diagonal in 123-av
(2) tunnels in Dyck paths \longleftrightarrow distances to anti-diagonal in 132-av

6. Applications

Corollary [Miner-P.]
Let $f p(\sigma)$ denote the number of fixed points in $\sigma \in S_{n}$.

$$
\mathbb{E}[f p(\sigma)] \sim \frac{2 \Gamma\left(\frac{1}{4}\right)}{\sqrt{\pi}} n^{\frac{1}{4}} \quad \text { as } \quad n \rightarrow \infty .
$$

where $\sigma \in S_{n}$ is a uniform random 231-avoiding.

Note: For other patterns the expectations for the number of fixed points were computed by Elizalde (MIT thesis, 2004). Curiously, they are all $O(1)$.

Main theorem also gives asymptotics for a large number of other statistics, such as rank, λ-rank, lis, last, etc.

