HOMEWORK 1 (MATH 206, FALL 2014)

I. Consider alphabet $A = \{1, 2, 3\}$ and a sequence of words

$$w_0 = (13232)^{\infty}, \quad w_{k+1} = \vartheta(w_k),$$

where $\vartheta(u)$ is obtained by substituting w_0 into positions of 3's in u. For example,

$$w_1 = (1123212232122121322213222)^{\infty}$$

(a) Prove that the limit word $w = \lim_{k \to \infty} w_k$ is well defined and contains no 3's.

(b) Prove that the word complexity $\varkappa(w,n) = \theta(n^{\alpha})$ for some $\alpha \approx 3.15$.

II. Let $A = \{0, 1\}$, and consider a morphism h(0) = 010, h(1) = 11. Define a sequence of words $w_k \in A^*$ as follows:

$$(\circledast) w_1 = 0, w_{k+1} = h(w_k).$$

For example,

$$w_2 = (010)(11)(010), \quad w_3 = (010)(11)(010)(11)(11)(010)(11)(010).$$

- (a) Prove that the limit word $w = \lim_{k \to \infty} w_k$ is well defined.
- (b) Prove that the word complexity $\varkappa(w, n) = \theta(n \log \log n)$.

III. Let $A = \{0, 1, 2\}$, and consider a morphism h(0) = 012, h(1) = 11, h(2) = 222. Define a sequence of words $w_k \in A^*$ via (\circledast). For example,

 $w_2 = 012, \quad w_3 = (012)(11)(222), \quad w_4 = (012)(11)(222)(11)(11)(222)(222)(222).$

- (a) Prove that the limit word $w = \lim_{k \to \infty} w_k$ is well defined.
- (b) Prove that the word complexity $\varkappa(w, n) = \theta(n \log n)$.

IV. Let $A = \{0, 1\}$ and $w \in A^{100}$. Prove that there are two nonempty subwords $x, y \in A^*$ such that:

(a) x^2y^2 is a subword of w.

(b) x^2yx^2 is a subword of w.

V. Let $A = \{0, 1\}$ and two morphisms h_0, h_1 defined as follows:

$$h_0(0) = 0, \ h_0(1) = 00, \qquad h_1(0) = 1, \ h_1(1) = 11.$$

Let $H: A^* \to A^*$ defined as follows:

$$H(x_1x_2x_3x_4...) = h_0(x_1)h_1(x_2)h_0(x_3)h_1(x_4)...$$

Let $w_1 = 1$, $w_{k+1} = H(w_k)$, for all $k \ge 1$. For example,

 $w_2 = h_0(1) = 00, \ w_2 = h_0(0)h_1(0) = 01, \ w_3 = h_0(0)h_1(1) = 011, \ w_4 = h_0(0)h_1(1)h_0(1) = 01100.$

- (a) Prove that the limit word $w = \lim_{k \to \infty} w_k$ is well defined.
- (b) Prove that w is cube free.

VI. Let w be a Sturmian word in the alphabet $A = \{0, 1\}$. Consider w' = h(w), where h(0) = 01, h(1) = 0. Prove or disprove: w' is Sturmian.

VII. Let w be the Fibonacci word and let X^n be the set of subwords of w of length n. Prove that X^n contains exactly one palindrome for even n, and exactly two palindromes for odd n. For example, X^3 contains two palindromes (010) and (101), while X^4 contains only one palindrome (1001).

VIII. Let $w = (a_1 a_2 \dots)$ be the Thue word. Prove that every finite word $u \in \{0, 1\}^*$ is equal to an *arithmetic pattern* in w, i.e. of the form $(a_m a_{m+k} a_{m+2k} \dots)$.

For example, recall that w = (0110100110010110...) contains 6 distinct subwords of length 3. The remaining 2 subwords of length 3 are given by arithmetic patterns $(000) = a_1a_4a_7$ and $(111) = a_2a_5a_8$.

IX. Consider n infinite word w = (1101100111001001110010011001001...) defined as a sequence $(a_1a_2...)$ with $a_{4i} = 1$, $a_{4i+2} = 0$ and $a_{2i+1} = a_i$ for all $i \ge 0$.

(a) Prove that $\varkappa(w, n) = O(n)$.

(b) Prove that w has O(n) arithmetic patterns of length n.

X. In the *Tower of Aleppo* game, there are three pegs: East, Center and West. Suppose there are n discs on the East peg. The goal is to move them to the West peg. However, only East-Center and Center-West moves are allowed. Find the shortest length of the solution.

This Homework is due Fri November 7, 2014 before class. Collaboration is allowed, but only in groups of at most 3 students. In that case you must write the names of your collaborators on the front page of the solutions.