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Abstract. Invariant subspaces and eigenfunctions for regular Hecke operators actinng
on spaces spanned by products of even number of Igusa theta constants with rational

characteristics are constructed. For some of the eigenfunctions of genuses g = 1 and
2, the corresponding zeta functions of Hecke and Andrianov are explicitely calculated.

Introduction

The Igusa theta constant of genus g ∈ N with characteristic m ∈ C2g is the
function on the upper half-plane of genus g,

Hg =
{
Z = X + iY ∈ Cgg

∣∣∣ tZ = Z, Y > 0
}
,

defined by the series

θm(Z) =
∑
n∈Zg

expπi
{
(n + m′)Z t(n + m′) + 2(n + m′) tm′′} ,

where m = (m′,m′′) with m′, m′′ ∈ Cg.
In [AA-FA(04)], assuming that the class number of the quadratic form

qr(X) = tXX = x2
1 + · · ·+ x2

r (X = t(x1, . . . , xr))

is equal to one, we have obtained explicit formulae for images of the products of
even number r of Igusa theta constants with rational characteristics under regular
Hecke operators in the form of linear combinations of similar products. In this paper
we apply the formulae in order to construct invariant subspaces and eigenfunctions
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of regular Hecke operators on spaces spanned by the products. For some of the
eigenfunctions of small genuses we calculate the corresponding zeta functions.

Notation. We reserve the letters N, Z, Q, R, and C for the set of positive
rational integers, the ring of rational integers, the field of rational numbers, the
field of real numbers, and the field of complex numbers, respectively. Amn is the set
of all m× n-matrices with entries in a set A, An = An1 , and An = A1

n.
We denote by

En =
{
Q = (qαβ) ∈ Znn

∣∣∣ qαβ = qβα, qαα ∈ 2Z (α, β = 1, . . . , n)
}

the set of all even matrices of order n, i.e. the set of mtrices of integral quadratic
forms in n variables q(x1, . . . , xn) = 1

2

∑
αβ qαβxαxβ .

If M is a matrix, tM always denotes the transpose of M . We denote through
this work by 1g the unit matrix of order g, and use the matrix notation

Jg =
(

0 1g
−1g 0

)
, ωg(a) =

(
1g 0
0 a1g

)
, ωg(a) =

(
a1g 0
0 1g

)
,

where a is a scalar and 0 = 0g the zero matrix of order g.

§1. Transformations of multiple theta constants

In this section we remind the basic definitions and transformation formulae for
products of Igusa theta constants, which will be refered as multiple theta constants
or theta products.

Note that if the products AB and BA two matrices A and B are both defined,
then, clearly, the products are square matrices with equal traces. It follows that the
theta constant θm(Z) with Z ∈ Hg and m = (m′,m′′) ∈ (Cg,Cg) can be rewritten
in the form

(1.1) θm(Z) =
∑
n∈Zg

e
{
Z t(n + m′)(n + m′) + 2 tm′′(n + m′)

}
,

where for a square matrix A we set

(1.2) e{A} = exp(πi · σ(A)),

and σ(A) denotes the trace of A. It follows that the product of r theta constants
with characteristics m1, . . . ,mr can be written in the form

(1.3) θθθ(Z, M) =
r∏
j=1

θmj (Z)
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=
∑

n1,...,nr∈Zg

e
{ r∑
j=1

(
Z t(nj + m′

j)(nj + m′
j) + 2 tmj

′′(nj + m′
j)
)}

=
∑
N∈Zr

g

e
{
Z t(N +M ′)(N +M ′) + 2 tM ′′(N +M ′)

}
,

where we set

N =

n1
...

nr

 , M ′ =

m′
1

...
m′
r

 , and M ′′ =

m′′
1

...
m′′
r

 .

A product of the form (1.3) will be called a multiple theta constant of genus g
with the characteristic matrix M = (M ′, M ′′) or just theta product. It can be also
considered as a theta function of genus g of the quadratic form qr.

The following criterion of the identical vanishing of multiple theta constants is a
direct consequence of the Igusa result on vanishing of theta constants ([Ig(72)], The-
orem 1, p. 174): the theta product with the characteristic matrix M = (M ′, M ′′) ∈
Cr2g is equal to the constant 0, if and only if there is a row mj = (m′

j ,m
′′
j ) of M

satisfying

(1.4) 2mj ∈ Z2g, 2m′
j
tm′′

j /∈ Z.

The transformation formulae of multiple theta constants θθθ(Z, M) with respect
to variable M easily follow from definition (see, for example, [AA-FA(04)], formulae
(2.2), (2,4)). We have

(1.5) θθθ(Z, UM) = θθθ(Z, M) for every U ∈ Er =
{
U ∈ GLr(Z)

∣∣∣ tUU = 1r
}
,

and

(1.6) θθθ(Z, M + S) = e
{
2 tS′′M ′}θθθ(Z, M) for every S = (S′, S′′) ∈ (Zrg, Zrg).

As to the variable Z, according to [AA-FA(04)], Lemma 2.1, the product of even
number r = 2k of theta constants satisfies the functional equation

(1.7) det(CZ +D)−kθθθ((AZ +B)(CZ +D)−1, M)

= χχχr(M)δ(M)δ(MM)θθθ(Z, MM),

for every matrix M =
(
A B
C D

)
of the group

(1.8) Γg00(2) =
{
M =

(
A B
C D

)
∈ Z2g

2g

∣∣∣ tMJgM = Jg, B ≡ C ≡ 0 (mod 2)
}
,
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where

(1.9) χχχr

((
A B
C D

))
= χk2(detD)

with the nontrivial Dirichlet character χ2 modulo 4, δ is the function of matrices
V = (V ′, V ′′) ∈ (Crg, Crg) defined by

(1.10) δ(V ) = δ(V ′, V ′′) = e{ tM ′M ′′},

and bar denotes complex conjugation.
In order to formulate transformation formulae related to theta products with

rational characteristic matrices, we have to recall some definitions. The connected
component of general real symplectic group of genus g consisting of all real sym-
plectic matrices of order 2g with positive multipliers,

(1.11) Gg = GSp+
g (R) =

{
M∈ R2g

2g

∣∣∣ tMJgM = µ(M)Jg, µ(M) > 0
}
,

where the matrix Jg was defined in Notation, is a real Lie group acting as a group
of analytic automorphisms on the g(g+ 1)/2-dimensional open complex variety Hg

by the rule

Gg 3M =
(
A B
C D

)
: Z 7→ M〈Z〉 = (AZ +B)(CZ +D)−1 (Z ∈ Hg).

Acting on the upper half-plane Hg, the group operates also on complex-valued
functions F on Hg by Petersson operators of integral weights k,

(1.12) Gg 3M =
(
A B
C D

)
: F 7→ F |kM = det(CZ +D)−kF (M〈Z〉).

The Petersson operators satisfy the rules

(1.13) F |kMM′ = (F |kM)|kM′ (M,M′ ∈ Gg).

For a subgroup Ω of Gg commensurable with the modular group of genus g,

Γg =
{
M∈ Gg

∣∣∣ M,M−1 ∈ Z2g
2g

}
a character χχχ of Ω, i.e. a multiplicative homomorphism of Ω into nonzero complex
numbers with the kernel of finite index in Ω, and an integral number k, we shall de-
note by Mk(Ω, χχχ) the space of all (Siegel) modular forms of weight k and character
χχχ for the group Ω, i.e. the space of all complex-valued functions on Hg holomorphic
in g(g + 1)/2 complex variables, satisfying the functional equation

(1.14) F |kM = χχχ(M)F

for every matrix M∈ Ω, where |k is the Petersson operator of weight k, and regular
at all cusps of Ω if g = 1.
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Theorem 1. ([AA − FA(04), Theorem 2.2]), the product of even number r = 2k
of theta constants of genus g ≥ 1 with rational characteristic matrix M ∈ 1

dZr2g,
where d ∈ N, satisfies the functional equation

(1.15) θθθ(Z, M)|kM = χχχM (M)θθθ(Z, M) ∀M ∈ Γg(d)
⋂

Γg00(2),

where
Γg(d) =

{
M∈ Γg

∣∣∣M≡ 12g (mod d)
}
,

is the principal congruence subgroup of level d of the modular group Γg, Γg00(2) is
the group (1.8), and where

(1.16) χχχM (M) = χχχr(M)e{S(M) tMM}

with the character χχχr defined by (1.9) and a symmetric matrix S(M) which can be
written in the form

(1.17) S(M) =
(
B + tB −A tB tD −A tD
D − 1g − C tB −C tD

) (
M =

(
A B
C D

))
.

If the theta product θθθ(Z, M) is not identically zero, then the function χχχM :
M 7→ χχχM (M) is a character of the group Γg(d)

⋂
Γg00(2) coinciding on the subgroup

Γg(2d2) with the character χχχr, and the theta product is a modular form of weight k
and character χχχM for the group Γg(d)

⋂
Γg00(2),

(1.18) θθθ(Z, M) ∈ Mk(Γg(d)
⋂

Γg00(2), χχχM ),

if moreover d is even, then

(1.19) θθθ(Z, M) ∈ Mk(Γg(2d2), 1) = Mk(Γg(2d2)).

The last inclusion allows one to define the action of Hecke operators on the
multiple theta constants.

We recall first the corresponding definitions. Let ∆ be a multiplicative semigroup
and Ω a subgroup of ∆. Let us consider the C–linear space of all formal finite linear
combinations with coefficients in C of symbols (ΩM), where M∈ ∆, being in one-
to-one correspondence with left cosets ΩM of the set ∆ modulo Ω, which are
invariant with respect to all right multiplications by elements of Ω,

H(Ω, ∆) = HC(Ω, ∆)

= {T =
∑
α

aα(ΩMα)
∣∣∣ Tω =

∑
α

aα(ΩMαω) = T ∀ω ∈ Ω}.
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The multiplication of elements

T =
∑
α

aα(ΩMα), T ′ =
∑
β

bβ(ΩNβ)) ∈ H(Ω, ∆)

defined by
TT ′ =

∑
α,β

aαbβ(ΩMαNβ)

does not depend on the choice of representatives Mα ∈ ΩMα and Nβ ∈ ΩNβ and
turns the linear space H(Ω, ∆) into an associative C-algebra with the unity element
(Ω1Ω). The algebra is called the Hecke–Shimura ring or HS–ring of a semigroup
∆ relative to a subgroup Ω ⊂ ∆ (over the field C) If every double coset ΩMΩ is a
finite union of left cosets ΩM′, then the linear combinations of the form

(1.20) (M) = (M)Ω =
∑

Mi∈ΩMΩ

(ΩMi) (M∈ ∆),

being in one-to-one correspondence with double cosets of ∆ modulo Ω, belong to
H(Ω, ∆) and form a basis of the ring over C. The symbols (ΩM) and (M) will be
refered as left and double classes of ∆ modulo Ω, respectively.

We will be interested in HS–rings H(Ω, ∆) of semigroups ∆ contained in the
semigroup

(1.21) Σg = Gg
⋂

Z2g
2g =

{
M∈ Z2g

2g

∣∣∣ tMJgM = µ(M)Jg, µ(M) > 0
}
,

of intergal symplectic matrices with positive multipliers µ(M) relative to congru-
ence subgroups Ω of the modular group Γg. An element of such a ring is called
homogeneous of multiplier µ if it is a linear combination of left or double classes
consisting of matrices with the same multiplier µ.

If
T =

∑
i

aα(ΩMα) ∈ H(Ω, Σg)

and F is a function contained in the space Mk(Ω) = Mk(Ω, 1), then image of the
function under the the action of Hecke operator ‖kT of weight k corresponding to
T is defined by

(1.22) F‖kT =
∑
α

aαF |kMα,

where |k are the Petersson operators (1.12). It does not depend on the choice of
representatives Mα ∈ ΩMα and again belong to the space Mk(Ω). Product of
elements of the HS–ring acts as product of the corresponding operators.
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Specifically, since in the assumptions of Theorem 1 the theta product θθθ(Z, M)
belongs to the space Mk(Γg(2d2)), we will consider the Hecke operators on this
space corresponding to homogeneous elements T of the ring

(1.23) Hg(2d2) = H(Γg(2d2), Σg(2d2)),

where

(1.24) Σg(q) =
{
M∈ Σg

∣∣∣ gcd(µ(M), q) = 1, M≡ ωg(µ(M)) (mod q)
}

(see Notation).

Theorem 2. Suppose that an even number r = 2k is such that the class number
h(qr) of the sum of r squares is equal to 1. Let, for g ∈ N, d ∈ 2N, and M ∈ 1

dZr2g,
θθθ(Z, M) be the multiple theta product (1.3) of genus g with characteristic matrix M .
Let T be an homogeneous element of the ring Hg(2d2) with the multiplier µ = µ(T )
such that in the case g < k each prime number p entering into the prime numbers
factorization of µ in an odd degree satisfies the congruence p ≡ 1 (mod 4).

Then the image of the function F = θθθ(Z, M) under the action of Hecke operator
‖kT is again a linear combination of theta products, and the linear combination
can be written in the form

(1.25) θθθ(Z, M)‖kT =
∑

D∈E+
r \S+

r (µ)

c(D,T)θθθ(Z, DMωg(µ̃))

with constant coefficients c(D,T), where

(1.26) S+
r (µ) =

{
M ∈ Zrr

∣∣∣ tDD = µ · 1r, detD > 0
}

and

(1.27) E+
r = S+

r (1)

denote the set of all proper integral similarities of the quadratic form qr with the
multiplier µ and the group of proper units of qr, respectively, matrices ωg were
defined in Notation, and where µ̃ ∈ N is an integral inverse of µ modulo 2d2.

The coefficients c(D,T) satisfy the relations

(1.28) c(UDV,T) = c(D,T)

for all U ∈ GLr(Z) and V ∈ Er =
{
M ∈ Zrr

∣∣∣ tDD = µ · 1r
}
.
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Proof. It follows from [AA-FA(04)], Theorem 4.1 and Lemma 4.2 that in the as-
sumptions of the theorem formulas (1.25) hold with summation over a set of rep-
resentatives Er\Sr(µ), where Sr(µ) is the set of all integral similarities of the
quadratic form qr with the multiplier µ. Since, clearly, each coset ErD with
D ∈ Sr(µ) contains a representative D′ with positive determinant and the coset
E+
r D

′ is uniquely determined by the coset ErD, the summation over Er\Sr(µ) can
be replaced by the summation over E+

r \S+
r (µ). 4

§2. Computation of coefficients

Here we summarize the known results of computations of the coefficients c(D,T )
in formulae (1.25). In order to present an intelligible account, we have first to go
into some details concerning Hecke–Shimura rings.

A subgroup Ω of the modular group Γg is said to be q–symmetric if it contains
the principal congruence subgroup of level q,

Ω 3 Γg(q) =
{
M∈ Γg

∣∣∣M≡ 12g (mod q)
}
,

and satisfies the condition ΩΣg(q) = Σg(q)Ω. For a q–symmetric group Ω ⊂ Γg,
the Hecke–Shimura ring H(Ω, Rq(Ω)), where Rq(Ω) = ΩΣg(q) = Σg(q)Ω, is called
q–regular HS–ring of Ω. According to [An(87), theorems 3.3.3 and 3.3.7], all q–
regular HS–rings of given genus g are commutative algebras isomorphic to each
other.

One can show that groups Γg(q′) as well as groups

(2.1) Γg0(q
′) =

{
M =

(
A B
C D

)
∈ Γg

∣∣∣ C ≡ 0 (mod q)′
}

are all q–symmetric, provided that q′ and q have the same prime divisors and q′

divides q, in addition, Rq(Γg(q′)) = Σg(q′), and

(2.2) Rq(Γ
g
0(q

′)) = Σg0(q
′)

=
{
M =

(
A B
C D

)
∈ Σg

∣∣∣ gcd(µ(M), q′) = 1, C ≡ 0 (mod q′)
}
.

In particular, the rings

(2.3) Hg
0(q) = H(Γg0(q), Σg0(q)), and Hg(q) = H(Γg(q), Σg(q))

are isomorphic. Moreover, one can show directly from definitions that every map
of the form

(2.4) T =
∑
α

aα(Γg(q)Mα) 7→ T ′ =
∑
α

aα
(
Γg0(l)ωg(q

′)Mαωg(q′)−1
)
,
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where q′ divides q and l divides q′q, is a homomorphism of the rings

(2.5) Hg(q) 7→ Hg
0(l) (q′|q, l|q′q).

This homomorphism determines isomorphisms of local p-subrings of the correspond-
ing rings generated by double classes whose multipliers are degrees of a prime num-
bers p not dividing q,

(2.6) Hg
p(q) 7→ Hg

0,p(l) (p - q, q′|q, l|q′q)

as well as isomorphism of the subrings generated by such p-subrings.
Further, we remind that the Zharkovskaya map from genus g to genus n,

Ψg,n = Ψg,n
k,χ : Hg

0(q) 7→ Hn
0 (q),

where k is an integer, and χ a Dirichlet character modulo q satisfying χ(−1) =
(−1)k, can be defined in the following way. Let first g > n ≥ 1, and T =∑
α aα(Γg0(q)Mα) ∈ Hg

0(q). One can assume that each representative Mα ∈
Γg0(q)\Σ

g
0(q) is choosen in the form

Mα =
(
Aα Bα
0 Dα

)
with Dα =

(
D′
α ∗

0 D′′
α

)
and D′

α ∈ Znn.

If Aα =
(
A′α ∗
∗ ∗

)
and Bα =

(
B′α ∗
∗ ∗

)
with r × r-blocks A′α and B′α, then

M′
α =

(
A′α B′α
0 D′

α

)
∈ Σr0(q),

and we put

Ψg,n
k,χ(T ) =

∑
α

aα|detD′′
α|−kχ−1(|detD′′

α|)(Γn0 (q)M′
α).

For n = g we set Ψg,n
k,χ(T ) = T , and for g < n define Ψg,n

k,χ(T ) as an element of the
inverse image (Ψn,g

k,χ)−1(T ), if T ∈ Ψn,g
k,χ(Hn

0 (q)).
Finally, for a nonsingular matrix Q ∈ Er (see Notation), an integral r×r-matrix

D satisfying the condition detD = ±µr/2 and such that µ−1 tDQD ∈ Er, and for
written in the ”triangular form” element

T ′ =
∑
β

bβ

(
Γr0(q)

(
Aβ Bβ
0 Dβ

))
∈ Hr

0(q) ( tAβDβ = µ1r),
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where q is the level of Q, we define the trigonometric sums I(D,Q, T ′) by

I(D,Q, T ′)

=
∑

β;D tDβ≡0 (mod µ)

bβ |detDβ |−r/2χ−1
Q (|detDβ |)e{µ−2Q[D] tDβBβ},

with e{· · · } being the exponent (1.2).
In that notation, Theorem 4.1 of [AA-FA(04)] gives the following formula for the

coefficients c(D,T):

(2.7) c(D,T) = I(µD−1, Qr,Ψg,r(T )),

where Qr = 2 · 1r is the matrix of quadratic form qr (of level 4), T is the image of
T under the map (2.5) with q = 2d2, q′ = 2, and l = 4, Ψg,r(T ) is an image of T
under the Zharkovskaya map Ψg,r = Ψg,r

k,χ with k = r/2 and χ = χk2 .
We remind that the HS–ring Hn

0 (q) is generated over C by the following double
classes of the form (1.20):
(2.8)

Tn(p) =
(
diag(1, . . . , 1︸ ︷︷ ︸

n

, p, . . . , p︸ ︷︷ ︸
n

)
)
Γn

0 (q)
,

Tnj (p2) =
(
diag(1, . . . , 1︸ ︷︷ ︸

n−j

, p, . . . , p︸ ︷︷ ︸
j

, p2, . . . , p2︸ ︷︷ ︸
n−j

, p, . . . , p︸ ︷︷ ︸
j

)
)
Γn

0 (q)
(j = 1, . . . , n),

where p runs over all prime numbers not dividing q (see [An(87)], Theorem 3.3.23).
The corresponding generators of the ring Hn(q) we will denote by

(2.9) Tn(p), Tn
1 (p2), . . . ,Tn

n(p
2),

respectively. The following proposition summarize all known at present results of
computations of sums (2.6) for the generators (2.8).

Proposition 3. Let Q be an even positive definite matrix of even order r = 2k,
q the level of Q, and χQ the Dirichlet character of the quadratic form with matrix
Q. Then the sums (2.6) for elements T r(p), T rr−1(p

2), and T rr (p2) with each prime
number p not dividing q, can be computed by the following formulas:

(2.10) I(D, Q, T r(p))

=

{
pk
∏k
j=1(1 + χQ(p)p−j), if D ∈ ∆(Q, p) = Λωg(p)Λ,

0, otherwise;
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(2.11) I(D, Q, T rr−1(p)) =


χQ(p)p(2+r−r2)/2, if D ∈ ΛDr

r−2,1(p)Λ,

αr(p), if D ∈ Λ(p1r),
0, otherwise,

where Λ = Λr = GLr(Z), Dr
r−2,1(p) = diag(1, p, . . . , p︸ ︷︷ ︸

r−2

, p2), and

αr(p) = χQ(p)p(2+r−r2)/2 (pr − 1)
p− 1

+ p−r
2/2(χQ(p)pr/2 − 1);

(2.12) I(D, Q, T rr (p2)) =
{
p−r

2/2 if D ∈ Λ(p1r),
0 otherwise .

Proof. In [An(91), formula (2.19) and Lemma 5.1] the sums γ(Q, D, T ) similar
to the sums (3.21) were defined and computed for T = T r(p). In [An(93), §2]
the sums γ(Q, D, T ) were, in fact, computed for T = T rr (p2) = (p12r)Γr

0(q) and
T = T rr−1(p

2) (see also [An(87), Lemma 3.3.32] for the presentation of T rr−1(p
2) used

in [An(93)]). It directly follows from definitions of these sums that I(D, Q, T ) =
χQ(µ)rµr/2γ(Q, µD−1, T ) = µr/2γ(Q, µD−1, T ). The rest is clear. 4

Note that the formulae of Proposition 3.4 determine sums I(D, Q, T ) for all
generators of the rings H1

0(q) and H2
0(q).

We turn now to concrete formulae for the action on theta products of Hecke
operators corresponding to certain coefficients of the spinor p-polynomials

(2.13) Qg
p(v) =

m∑
j=1

(−1)jqgj (p)v
j , where m = 2g,

over p-subrings of the rings Hg(q) for prime p not dividing q (for the case of
isomorphic rings Hg

0(q) see, for example, [An(87), (3.3.78)]). The polynomials
present considerable interest because after substituting v = p−s and replacing coef-
ficients by eigenvalues of corresponding Hecke operators acting on an eigenfunction
F ∈ Mk(Γg(q)) one gets denominators Qp(F, p−s) of p-factor of the spinor Euler
product

(2.14) Z(F, s) =
∏
p-q

Qp(F, p−s)−1.

relevant to the eigenfunction. For g = 1 it is the Hecke zeta function of the elliptic
modular form F ; for g = 2 the product determines the Andrianov zeta function of
the eigenfunction F of genus 2.
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We shall restrict ourselves to the action on theta products of Hecke operators
corresponding to the elements qg1(p), qgm−1(p), qgm(p), and q2

2(p). By [An(87),
(3.3.81), (3.3.79), (3.3.80), and Exercise 3.3.38], in the notation (2.9) this coefficients
can be written in the form

(2.15) qg1(p) = Tg(p), qm−1(p) = (pg(g+1)/2)(m/2)−1Tg(p),

qgm(p) = (pg(g+1)/2Tg
g(p

2))m/2,

and

(2.16) q2
2(p) = pT2

1(p
2) + p(p2 + 1)T2

2(p
2).

Hence, it will be sufficient to consider the action of operators corresponding to
elements Tg(p), Tg

g(p
2), and T2

1(p
2).

First we shall consider the action of the Zharkovskaya map on the corresponding
elements. For brevity we set

(2.17) [p]n = Tnn (p2) = (p12g)Γn
0 (q).

the

Lemma 4. The following formulae hold for the action of the Zharkovskaya map
Ψ = Ψn,n−1

k,χ : Hn
0 (q) 7→ Hn−1

0 (q) on some of generators (2.8) for n > 1 and each
prime number p not dividing q :

(2.18) Ψn,n−1(Tn(p)) = (1 + χ̄(p)pn−k)Tn−1(p);

(2.19) Ψn,n−1([p]n) = χ̄(p)p−k[p]n−1;

(2.20) Ψn,n−1(Tnn−1(p
2)) = χ̄(p)p1−kTn−1

n−2 (p2) + bn(p)[p]n−1,

where bn(p) = bn,k,χ(p) = χ̄(p2)p2n−2k + χ̄(p)(p− 1)p−k + 1.

Remark 5. The action of the Zharkovskaya map related to the action of Hecke
operators on the spaces Mn

k (q, χ) was calculated in [An(87), §4.2.4]. However, ap-
plying the results of calculations, one have to take into account that the Hecke oper-
ators defined in [An(87)] by (2.4.11) and (2.4.12) have another normalization than
one we use here and differ from the operators defined in [An(96)] by the equalities
(1.10) with l = 0, (2.13), (2.14), and (2.20) with Q = H and P = 0 on homogeneous
elements of multiplicator µ by the factor χ(µn)µnk−n(n+1)/2.
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Proof of the lemma. The formula (2.18) follows from Propositions 4.2.17 and 4.2.18
and formula (4.2.80) of [An(87)] applied to Hecke operators ‖kχ(pn)pnk−n(n+1)/2Tn(p)
(see Remark 5). Formula (2.19) follows by similar arguments from Lemma 3.3.34 of
[An(87)]. As to formula (2.20), the situation is slightly more complicated. First, by
using factorization (3.5.69) of Theorem 3.5.23, formulae (3.5.34), (3.4.15), (3.5.33),
and (3.3.61) of [An(87)], we get the relation

(2.21) Tnn−1(p
2) = −pn[p]nrn1 (p) + (pn − 1)[p]n,

where rn1 (p) is the first coefficient of the Rankin p-polynomial Rnp (v) defined by
formulae (3.5.15) and (3.5.16) of [An(87)]. Since µ(rn1 (p)) = 1, it follows from
[An(87)], Theorem 4.2.18 and relation (4.2.82) that

(2.22) Ψn,n−1(rn1 (p)) = rn−1
1 (p)− χ̄(p)pn−k − χ(p)pk−n.

Since the Zharkovskaya map is a ring homomorphism, formula (2.20) follows from
(2.21), (2.19), (2.22) by an easy computation. 4

Proposition 6. In the notation and assumptions of Theorem 2 the image of the
theta product θθθ(Z, M) under the action of Hecke operators ‖kTg(p) for every prime
number p not dividing d and satisfying the congruence p ≡ 1 (mod 4) if g < k can
be written in the form

(2.23) θθθ(Z, M)‖kTg(p) = γ(g, r)
∑

D∈E+
r \S+

r (p)

θθθ(Z, DMωg(p̃)),

where

γ(g, r) = χ(p)gpg(g+1)/2−kg ×


∏k−g
j=1 (1 + χ(p)pj−1)−1, if g < k;

1, if g = k;∏g−k
j=1 (1 + χ(p)p−i), if g > k,

and χ = χr = χk2 is the character of the quadratic form qr.

It follows that formulas (1.25) for T = Tg(p) hold with the coefficients

(2.24) c(D, Tg(p)) = γ(g, r) ∀D ∈ S+
r (p).

Proof. By (1.25), (2.7), and (2.15), we have

θθθ(Z, M)‖kTg(p) =
∑

D∈E+
r \S+

r (p)

I(pD−1, Qr,Ψg,r(T g(p)))θθθ(Z, DMωg(p̃)),
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where Ψg,r = Ψg,r
k,χ is the Zharkovskaya map with character χ.

Suppose first that g < r, then iteration of formula (2.18) give us the relation

Ψr,g(T r(p)) =


r∏

j=g+1

(1 + χ(p)pj−k)

T g(p),

whence, since in our assumptions the product on the right is not zero, we get

Ψg,r(T g(p)) =


r∏

j=g+1

(1 + χ(p)pj−k)


−1

T r(p)

= χ(p)r−gp(g−r)(g+1)/2


r∏

j=g+1

(1 + χ(p)pk−j)


−1

T r(p).

Note that if D ∈ S+
r (p), i.e. D is an integral matrix of order r = 2k satisfying

tDD = p ·1r, then detD = pk and the matrix pD−1 = tD is integral. By the theory
of elementary divisors for matrices over Z, we conclude that the matrices D and

pD−1 both belong to the double coset Λr
(

1r 0
0 p1r

)
Λr of the group Λr = GLr(Z).

Hence, using the above formulae together with formula (2.11), we obtain

θθθ(Z, M)‖kTg(p) =

= χ(p)r−gpk+(g−r)(g+1)/2


k∏
j=1

(1 + χ(p)p−j)


×


r∏

j=g+1

(1 + χ(p)pk−j)


−1 ∑

D∈E+
r \S+

r (p)

θθθ(Z, DMωg(p̃)).

Since, clearly,

χ(p)r−gpk+(g−r)(g+1)/2


k∏
j=1

(1 + χ(p)p−j)

×


r∏

j=g+1

(1 + χ(p)pk−j)


−1

= χ(p)r−gpg(g+1)/2−kg ×


∏k−g
j=1 (1 + χ(p)pj−1)−1, if g < k;

1, if g = k;∏g−k
j=1 (1 + χ(p)p−i), if g > k,
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and χ(p) = ±1, this proves the formula (2.23) in the case g < r. If g > r, then
similarly, by using repeatedly (2.18), we get

Ψg,r(T g(p)) =


g∏

j=r+1

(1 + χ(p)pj−k)

T r(p)

= χ(p)g−rp(g−r)(g+1)/2


g−k∏
j=k+1

(1 + χ(p)p−j)

T r(p).

This together with (2.10) again prove the formulae (2.23). The case g = r directly
follows from (2.10). 4

Corollary 7. In the notation and assumptions of Theorem 2 the image of the theta
product θθθ(Z, M) under the action of Hecke operators ‖kTg(p) for a prime number
p not dividing d satisfies the rule

(2.25) θθθ(Z, M)‖kTg(p) = 0 if g ≥ k and p ≡ 3 (mod 4).

Proof. The assertion follows from formula (2.23), because in this case the congru-
ence tXX ≡ 0 (mod p) has no solutions in integral r×r-matrices of rank k modulo
p, and so the set Sr(p) is empty (see, e.g., [An(87)], Corollary A.2.15). 4

Proposition 8. In the notation and assumptions of Theorem 2 the image of the
theta product θθθ(Z, M) under the action of Hecke operators ‖kTg

g(p
2) for every prime

number p not dividing d can be written in the form

(2.26) θθθ(Z, M)‖kTg
g(p

2) = χr(p)gp−kgθθθ(Z, Mpωg(p̃2)).

It follows that formulas (1.25) for T = Tg
g(p

2) hold with the coefficients

(2.27) c(D, Tg
g(p

2)) =
{
χr(p)gp−kg, for D ∈ E+

r (p1r)
0, for D /∈ E+

r (p1r)

Proof. It follows from (2.19) that

Ψg,r([p]g) = (χ(p)p−k)g−r[p]r = χ(p)gp−kg+2k2
[p]r,

where [p]g is the element (2.17) corresponding to Tg
g(p

2) and χ = χr. Hence, by
Theorem 2, formulae (2.7) and (2.12), we can write

θθθ(Z, M)‖kTg
g(p

2) = χ(p)gp−kg+2k2−2k2 ∑
D∈E+

r \S+
r (p2)

T
Λr(p1r)

θθθ(Z, DMωg(p̃2))
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= χ(p)gp−kgθθθ(Z, Mpωg(p̃2)).4

Note that the action of the operator ‖kTg
g(p

2) can also be directly calculated
on the basis of definitions, which, fortunately, gives the same result. Really, if we

denote by ρ(p) a matrix of Γg congruent modulo 2d2 to the matrix
(
p1g 0
0 p̃1g

)
,

then one can take

Tg
g(p

2) = (ρ(p)(p12g))Γg(2d2) =
(
Γg(2d2) (ρ(p)(p12g))

)
,

and so, by (1.22), (1.12), and (1.7), we have

θθθ(Z, M))‖kTg
g(p

2) = χ(p̃g)p−kgθθθ(Z, Mρ(p)),

because, clearly, δ(M)δ(Mρ(p)) = 1.

Proposition 9. In the notation and assumptions of Theorem 2 and Proposition 3
the image of the theta product θθθ(Z, M) with g = 2 and even r ≥ 2 under the action
of Hecke operators ‖kT2

1(p
2) can be written for every prime number p not dividing

d in the form

(2.28) θθθ(Z, M)‖kT2
1(p

2)

= p3−3kχr(p)
∑

D∈E+
r \(S+

r (p2)
T

ΛrDr
r−2,1(p)Λ

r)

θθθ(Z, DMωr(p̃2))+βr(p)θθθ(Z, Mpωr(p̃2)),

where

βr(p) = p2(1−k)2αr(p)−

{
0, if r = 2

χr(p)p2−3k
(∑r−1

i=0 p
ibr−i(p)

)
, if r > 2

and constants bj(p) were defined in Lemma 4.

It follows that formulas (1.25) for T = T2
1(p

2) hold with the coefficients

(2.29) c(D, T2
1(p

2)) =


p3−3kχr(p), for D ∈ S+

r (p2)
⋂

ΛrDr
r−2,1(p)Λ

r

βr(p), for D ∈ E+
r (p1r)

0, in other cases .

Proof. By induction from formulae (2.19) and (2.20) easily follow for 1 ≤ j ≤ r− 2
the relations Ψr,r−j([p]r) = aj [p]r−j and

Ψr,r−j(T rr−1(p
2)) = (ap)jT r−jr−j−1(p

2) + aj−1

(
j−1∑
i=0

pibr−i

)
[p]r−j ,
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where a = χ(p)p−k. These relations with j = r − 2 ≥ 1 imply the relation

Ψr,2

(
T rr−1(p

2)− a−1

(
r−1∑
i=0

pibr−i(p)

)
[p]r

)
= (ap)r−2T 2

1 (p2).

It follows that we can take

Ψ2,r(T 2
1 (p2)) = (ap)2−r

(
T rr−1(p

2)− a−1

(
r−1∑
i=0

pibr−i(p)

)
[p]r

)
.

Now, by Theorem 2, formula (2.7), and Proposition 3,for r > 2 we obtain

θθθ(Z, M)‖kT2
1(p

2)

=
∑

D∈E+
r \S+

r (p2)

I(p2D−1, Qr,Ψ2,r(T 2
1 (p2)))θθθ(Z, DMωr(p̃2))

= (ap)2−r
∑

D∈E+
r \S+

r (p2)

[
I(p2D−1, Qr, T

r
r−1(p

2)))

− a−1

(
r−1∑
i=0

pibr−i(p)

)
I(p2D−1, Qr, [p]r)

]
θθθ(Z, DMωr(p̃2))

= (ap)2−rp(2+r−r2)/2χr(p)
∑

D∈E+
r \(S+

r (p2)
T

ΛrDr
r−2,1(p)Λ

r)

θθθ(Z, DMωr(p̃2))

+ (ap)2−r
(
αr(p)− a−1p−kr

(
r−1∑
i=0

pibr−i(p)

))
θθθ(Z, Mpωr(p̃2)).

Substituting here a = χ(p)p−k = χr(p)p−k and taking into account that r = 2k
and χr(p) = ±1, we obtain the formula (2.28) for r > 2. But if r = 2, then, by the
same reason, we have

θθθ(Z, M)‖kT2
1(p

2) =
∑

D∈E+
r \S+

r (p2)

I(p2D−1, Qr, T
2
1 (p2))θθθ(Z, DMωr(p̃2))

= χ2(p)
∑

D∈E+
2 \(S

+
2 (p2)

T
Λ2D2

0,1(p)Λ
2)

θθθ(Z, DMω2(p̃2)) + α2(p)θθθ(Z, Mpω2(p̃2)).

4
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§3. Congruence characters and Hecke invariant subspaces

In order to constrict search of invariant subspaces and eigenfunctions of Hecke op-
erators, it turns out to be convenient to pass from the spaces Mg

k(q) = Mk(Γg(q), 1)
to subspaces of the form Mk(Ω, χ) where Ω is a subgroup of the modular group
containing Γg(q) and χ a character of Ω trivial on Γg(q). Generally speaking, non-
trivial characters of this kind not necessarily exist. But if, for example, the quotient
group Ω′\Ω, where Γg(q) ⊂ Ω′ ⊂ Ω, is Abelian, then a number of such characters
exist and, moreover, since each finite-dimensional complex representation of a finite
Abelian group is fully reducible, we have the direct sum decomposition

(3.1) Mk(Ω′) =
⊕

χ∈Char(Ω′\Ω)

Mk(Ω, χ).

where χ run through the group Char(Ω′\Ω) of characters of the factor group Ω′\Ω
considered as characters of Ω trivial on Ω′. In this section we consider some interme-
diate subgroups Ω, Γg(q) ⊂ Ω ⊂ Γg, with Abelian factor groups Γg0(q)\Ω, describe
corresponding characters, and examine their relation with regular Hecke operators.
Then we shall consider characters χχχM of the form (1.16) and their correlation with
Abelian characters and Hecke operators.

Proposition 10. Let q, q′ be positive integers such that q′|q|(q′)2 and let d = q/q′.
Then for every g = 1, 2, . . . the map

(3.2) % : Γg(q′) 3M = 12g + q′W 7→ %(M) = W/dZ2g
2g ∈

(
Z/dZ

)2g
2g

is an epimorphism of the group Γg(q′) on the additive Abelian group

(3.3) W g(d) =
{
W ∈

(
Z/dZ

)2g
2g

∣∣∣ tWJ ≡ −JW (mod d)
}

with the kernel Γg(q), where J = Jg is the matrix defined in Notation.

Proof. Each matrix M∈ Γg is an integral matrix satisfying the relation

(3.4) tMJM = J.

If M ∈ Γg(q′), then, by setting in (3.4) M = 12g + q′W and passing to the
congruence modulo q, we obtain

J = t(12g + q′W )J(12g + q′W ) ≡ J + q′ tWJ + q′JW (mod q),

whence tWJ + JW ≡ 0 (mod d). This proves that %(Γg(q′)) ∈ W g(d). It is clear
that %(M) = 0 if and only if M ∈ Γg(q). Further, if matrices M = 1g + q′W and
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M′ = 1g + q′W ′ belong to Γg(q′), then MM′ ≡ 1g + q′(W +W ′) (mod q), whence
%(MM′) = %(M) + %(M′).

Finally, let us prove that the map % is onto. If W ∈ W g(d) then the matrix
12g + q′W belongs to the group

(3.5) Spg(Z/qZ, q′)

=
{
M∈

(
Z/qZ

)2g
2g

∣∣∣ tMJM≡ J (mod q), M≡ 12g (mod q′)
}
.

It is well known that the natural map modulo q

Γg = Spg(Z) 7→ Spg(Z/qZ) = Spg(Z/qZ, 1)

is an epimorphism (see, for example, [An(87), Lemma 3.3.2(1)]). It follows that the
map determines epimorphism

(3.6) Γg(q′) 7→ Spg(Z/qZ, q′) (q′|q).

Hence there is M∈ Γg(q′) with M≡ 12g + q′W (mod q) and so %(M) = W . 4

Now, in the assumptions of the proposition we are going to describe the group
of characters of Γg(q′) trivial on Γg(q). We denote by

(3.7) V g(d) = E2g/dE2g

the set of even matrices modulo d of order 2g (see Notation). For V ∈ V g(d), we
define the function V̂ on matrices M∈ Γg(q′) by

(3.8) V̂ (M) = V̂ (12g + q′W ) = exp
(
πi

d
σ(JWV )

)
= e

{
d−1JWV

}
.

Proposition 11. In the notation and assumptions of Proposition 10 and notation
(3.7), (3.8), the map

V g(d) 3 V 7→ V̂

is an isomorphism of the additive group V g(d) onto the group Char(Γg(q)\Γg(q′))
of all characters of the group Γg(q′) trivial on Γg(q).

Proof. By definition, we can write

(3.9) V̂ (M) = e
{
d−1J%(M)V

}
(M∈ Γg(q′))

where % is the map (3.2). If M ∈ Γg0(q), we have %(M) ≡ 0 (mod d), whence
V̂ (M) = 1 for all V ∈ V g(d). Then, by Proposition 10, it follows that the function
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V̂ is a character of Γg(q′) trivial on Γg(q) for every V ∈ V g(d) . It is also clear that
V̂ + V ′ = V̂ V̂ ′.

It remains to show that each character χ ∈Char(Γg(q′)/Γg(q)) has the form
χ = V̂ with V ∈ V g(d). In view of Proposition 10 it is sufficient to prove that each
character of W g(d) has the form

(3.10) W 7→ e
{
d−1JWV

}
= exp

2πi
d

∑
1≤i≤j≤2g

w′ijvij

 ,

where (w′ij) = JW and V = (v′ij) ∈ V g(d) with v′ii = 2vii and v′ij = v′ji = vij for
1 ≤ i < j ≤ 2g. By the definition of the sets W g(d), we conclude that the map

(3.11) W 7→ JW = (w′ij)

is an isomorphism onto the group of all symmetric matrises of order 2g over Z/dZ
which is the direct sum of 2g(2g + 1)/2 = g(2g + 1) copies of the additive group
Z/dZ. Since each character of the last group has the form a 7→ exp(2πiab/d), it
follows that each character of W g(d) has the form (3.10). 4

Now we shall turn to regular Hecke operators and examine their relations with
the described congruence characters.

Proposition 12. Let Ω be a q-symmetric subgroup of Γg, i.e. such that Γg(q) ⊂ Ω
and ΩΣg(q) = Σg(q)Ω, and let µ be an integer coprime to q. Then the following
statements are true:

(1) The map

(3.12) M =
(
A B
C D

)
7→
(
A µB
µ̃C D

)
= ωg(µ)Mωg(µ̃) = M|µ,

where M denotes the class of M∈ Ω modulo Γg(q) and µ̃ is an inverse of µ modulo
q, is an automorphism of the factor group Γg(q)\Ω;

(2) For every homogeneous element

T =
∑
α

aα(Γg(q)Mα) ∈ Hg(q)

with µ(T ) = µ and every character χ of Ω trivial on Γg(q), the Hecke operator

‖kT : F 7→ F‖kT =
∑
α

aαF |kMα
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on the space Mk(Γg(q)), where |kM are the Petersson operators (1.12), maps the
subspace Mk(Ω, χ) into the subspace Mk(Ω, χ|µ), where

(3.13) (χ|µ)(M) = χ(M|µ) (M∈ Ω).

(3) If in the notation and assumptions of Proposition 11 the character χ has the
form χ = V̂ , then

(3.14) χ|µ = V̂ |µ = V̂ |µ with V |µ = ωg(µ̃)V ωg(µ),

An assertion similar to part (2) for the operators ‖kT (µ) was cited without proof
in [SM-T(93), Lemma 3.1].

Proof. For brevity we set Γg(q) = K. If we take a matrix N ∈ R(K) = Σg(q) with
µ(N ) = µ and M∈ Ω, then NM ∈ R(K)Ω = ΩR(K), whence NM = M′N ′ with
M′ ∈ Ω and N ′ ∈ R(K). Passing to congruence modulo q, we get

ωg(µ)M≡M′ωg(µ) (mod q) =⇒ M̄′ = M|µ.

It follows that the image of map (3.12) is contained in Ω = Γn(q)\S. The rest of
assertion (1) is clear.

In order to prove (2), it is sufficient to consider an element T of the form (1.20),
i.e. T = (N )K with N ∈ Σg(q) and µ(N ) = µ. If (N )K =

∑
j(KNj) with

Nj ∈ R(K), then, by [An(87), Theorem 3.3.3(4)], we get decomposition (N )Ω =∑
j(ΩNj). It follows that for each M ∈ Ω we have NjM = M′

jNj′ , where j → j′

is a permutation. Passing as above to congruences modulo q, we conclude that
N ′
j = M|µ, where µ = µ(N). Hence, for F ∈ Mk(Ω, χ) we we obtain

F‖k(N )KM =
∑
j

F |kNjM =
∑
j

F |kM′
j |kNj′ = χ(M|µ)F‖k(N )K .

Finally, the map χ 7→ χ|µ defined by (3.12) and (3.13), clearly, replaces a cha-
racter V̂ of the form (3.8) by the character V̂ |T , given by

(V̂ |µ)(M) = V̂ (ωg(µ)Mωg(µ̃)

= e
{
d−1Jωg(µ)%(M)ωg(µ̃)V

}
) = e

{
d−1J%(M)ωg(µ̃)V ωg(µ)

}
.4

Now, let us turn to the characters χχχM of the form (1.16). According to Theorem
1, if d is an even common denominator of the entries of M , then χχχM is a character
of the group Γg(d) trivial on the subgroup Γg(2d2). If g > 1 the factor group
Γg(2d2)\Γg(d) is non-Abelian ([SM-T(93)], Proposition 11), and so we can not
directly apply Proposition . However, the two consecutive factor groups of the
sequence

Γg(2d2) ⊂ Γg(2d) ⊂ Γg(d)

are Abelian, which will allow us to apply Proposition 11 in two steps.
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Proposition 13. Let χχχM and χχχN be two characters of the group Γg(d) of the form
(1.16), where M, N ∈ 1

dZr2g with even r and d.
If the matrices M and N satisfy the condition

(3.15) tMM − tNN ∈ 1
d

E2g,

then the corresponding characters are equal,

χχχM (M) = χχχN (M) ∀M ∈ Γg(d).

Conversely, if the characters are equal and d ≡ 0 (mod 4), then the matrices M
and N satisty the condition (3.15).

Proof. We start with preliminary remarks on the matrices M and S(M). First of

all, we note that for M = 12g +M′ = 12g +
(
A′ B′

C ′ D′

)
∈ Γg(d) we can write

S(M) =
(

B 1g −A
D − 1g −C

)
−
(

(A− 1g) tB (A− 1g) t(D − 1g)
C tB C t(D − 1g)

)

(3.16) =
(
B′ −A′
D′ −C ′

)
−
(
A′ tB′ A′ tD′

C ′ tB′ C ′ tD′

)
= M′J −

(
A′ tB′ A′ tD′

C ′ tB′ C ′ tD′

)
where the first matrix is divisible by d and, by (3.3), is symmetric modulo d2, and
the second matrix is divisible by d2.

It follows from (1.16) that

(3.17) χχχM (M)/χχχN (M) = e {S(M)L} ,

where L = tNN − tMM .
Now, if the condition (3.15) is fulfilled, that is the matrix dL is even, then the

matrix

d2

(
A′ tB′ A′ tD′

C ′ tB′ C ′ tD′

)
L =

1
d

(
A′ tB′ A′ tD′

C ′ tB′ C ′ tD′

)
dL

is integral and divisible by 2. Hence, the quotient (3.17) with S(M) taken in the
form (3.16) is equal to e{M′JL}. Since the matrix M′J is symmetric modulo d2,
the integral matrix 1

dM
′J is symmetric modulo 2. Hence, the trace of the matrix

1
dM

′JdL is an even integer and the quotient (3.17) is equal to 1.
Conversely, if the quotient is equal to 1 for all M ∈ Γg(d), it is true for all

M ∈ Γg(2d). But if M ∈ Γg(2d), the matrix M′ is divisible by 2d. Hence the
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matrix
(
A′ tB′ A′ tD′

C ′ tB′ C ′ tD′

)
L is integral and divisible by 4, and so the quotient (3.17)

for M∈ Γg(2d) is equal to e{M′JL} = e{ 1
d (M

′/2)J/(2d2L)} with an even matrix
2d2L. By applying Proposition 11 to the quotient group Γg(q)\Γg(q′) with q = 2d2

and q′ = 2d, we conclude that the character of the group given by

M 7→ e{1
d
(M′/2)J(2d2L)} = e{1

d
{Jρ(M)J(2d2L)J−1}

can be trivial only if the matrix J(2d2L)J−1 is contained in dE2g, that is L ∈ 1
2dE2g,

since clearly J−1E2gJ = tJE2gJ = E2g. Now, for M∈ Γg(d), the matrix(
A′ tB′ A′ tD′

C ′ tB′ C ′ tD′

)
L =

1
2d

(
A′ tB′ A′ tD′

C ′ tB′ C ′ tD′

)
2dL

is integral and divisible by 2, since we have supposed that d is divisible by 4.
It follows that the quotient (3.19), for M ∈ Γg(d), is equal to e{M′JL} =
e{ 1

2 (M′/d)J2dL} with an even matrix 2dL. By applying again Proposition 11
to the quotient group Γg(q)\Γg(q′) this time with q = 2d and q′ = d, we similarly
conclude that the quotient (3.19) can be trivial only if 2dL ∈ 2Eg. 4

It looks likely that the condition d ≡ 0 (mod 4) in the second part of the propo-
sition can be omitted, but we could not prove it.

Finally, we shall consider relations of the characters χχχM with Hecke operators.

Proposition 14. Let M = (M ′, M ′′) ∈ 1
dZr2g with even d and r = 2k, and let

T ∈ Hg(2d2) be an homogeneous element with µ(T ) = µ. Then the Hecke operator
‖kT on the space Mk(Γg(2d2)) maps the subspace Mk(Γg(d), χχχM ) into the subspace
Mk(Γg(d), χχχM |µ) with the character χχχM |µ of the form

(3.18) (χχχM |µ)(M) = χχχr(M)e{S(M)ωg(µ̃) tMMωg(µ)} (M∈ Γg(d)) ,

where µ̃ is an inverse of µ modulo 2d2.
The conditions

(3.19) (µ− 1) tM ′M ′, (µ̃− 1) tM ′′M ′′ ∈ 1
d

Eg

are sufficient for the equality χχχM |µ = χχχM of the characters; if d is divisible by 4,
then the conditions (3.19) are also necessary for the equality.

Proof. By Proposition 12, we have

(χχχM |µ)(M) = χχχr(M)e{S(ωg(µ)Mωg(µ̃)) tMM}.
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If M =
(
A B
C D

)
, then, by (3.12), ωg(µ)Mωg(µ̃) =

(
A µB
µ̃C D

)
, whence, by

(1.17), we obtain

(3.20) S(ωg(µ)Mωg(µ̃))

=
(
µ(B + tB −A tB) D − 1g − C tB

D −D tA −µ̃C tD

)
= ωg(µ)S(M)ωg(µ̃).

The formula (3.18) follows.
By (3.18) and Proposition 13, the condition

ωg(µ) tMMωg(µ̃)− tMM =
(

(µ− 1) tM ′M ′ (µµ̃− 1) tM ′M ′′

0 (µ̃− 1) tM ′′M ′′

)
∈ 1
d

E2g.

is sufficient for equality of the characters, and it is also necessary for the equality
if d is divisible by 4. The proposition follows. 4

Proposition 14 shows that in search of nonzero eigenfunctions for all regular
Hecke operators on spaces Mk(Γg(d), χχχM ) one can restrict oneself, at least when
d is divisible by 4, to the case of characters χχχM with matrices M satisfying the
conditions (3.19) for all µ coprime to d. Further reduction is related to an action
of the multiplicative group (Z/qZ)∗ of the ring Z/qZ on spaces of modular forms
for Γg(q). Let us set

(3.21) Dg(q) =
{
d(a) ∈ Γg

∣∣ d(a) ≡ ( a1g 0
0 a−11g

)
(mod q), gcd(a, q) = 1

}
.

Dg(q) is, clearly, a subgroup of Γg containing Γg(q) as a normal subgroup, and
the factor group Dg(q)/Γg(q) is isomorphic to the multiplicative group (Z/qZ)∗.
We shall denote by d̄(a) = d(ā) the class of d(a) ∈ Dg(q) in the factor group. It
depends only on the class ā of a modulo q. Operators ‖kd̄(a) = ‖kd(a) define an
multiplicative action of the factor group on modular forms of weight k for the group
Γg(q).

Proposition 15. Let M = (M ′,M ′′) ∈ 1
dZr2g, where d and r = 2k are even, be a

matrix satisfying the conditions (3.19) for all µ coprime to d. Then each operator
‖kd̄(a) = ‖kd(a) with d(a) ∈ Dg(2d2) on the space Mk(Γg(2d2)) maps the subspace
Mk(Γg(d), χχχM ) into itself.

Proof. If F ∈ Mk(Γg(d), χχχ), then, by (1.13) and (1.14),

F‖kd(a)‖kd(a−1)Md(a) = χχχ(M)F‖kd(a) (M∈ Γg(d)),
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hence F‖kd(a) ∈ Mk(Γg(d), χχχ′) with χχχ′(M) = χχχ(d(a)Md(a−1)). Applying it to

the character χχχ = χχχM , since, for M =
(
A B
C D

)
,

M′ = d(a)
(
A B
C D

)
d(a−1) ≡

(
A a2B

a−2C D

)
(mod 2d2),

we get, by Proposition 12, the relation

χχχ′M (M) = χχχM (M′) = χχχr(M′)e{S(M′) tMM}

= χχχr(M)e{S(ωg(a2)Mωg(ã2)) tMM},

where ã is an inverse of a modulo 2d2. By (3.20) and (3.19), the last expression is
equal to χχχr(M)e{S(M)ωg(ã2) tMMωg(a2)} = χχχM (M). 4

The proposition implies that the group (Z/2d2Z)∗ acts by operators ‖kd̄(a) with
d(a) ∈ Dg(2d2) on every space Mk(Γg(d), χχχM ), where M satisfies assumptions of
the lemma. It follows that each such space is the direct sum

(3.23) Mk(Γg(d), χχχM ) =
⊕

ψ∈Char(Z/2d2Z)∗

Mk(Γg(d), χχχM ; ψ),

where ψ ranges through the group of characters of the group (Z/2d2Z)∗, of the
subspaces

(3.24) Mk(Γg(d), χχχM ; ψ)

= {F ∈ Mk(Γg(d), χχχM )
∣∣ F‖kd(a) = ψ(a)F (d(a) ∈ Dg(2d2))},

and the map

(3.25) Mk(Γg(d), χχχM ) 3 F 7→
∑

a∈(Z/2d2Z)∗

ψ(a)F‖kd(a)

is projection of the space on the subspace Mk(Γg(d), χχχM ; ψ).

Proposition 16. Each operator ‖kd(a) with d(a) ∈ Dg(2d2) on the space Mk(Γg(2d2))
commutes with each of the regular Hecke operators for Γg(2d2).

Proof. It is sufficient to consider Hecke operators corresponding to elements T =
(M)Ω of the form (1.20) with M∈ Σg(q), where q = 2d2 and Ω = Γg(q). We note
that the matrix D(a) = ad(a) belongs to Σg(q) and satisfies ΩD(a)Ω = ΩD(a).
Since the ring Hg(q) is commutative, we have (M)Ω(D(a))Ω = (D(a))Ω(M)Ω. It
follows that ‖kT‖kD(a)Ω = ‖kD(a)Ω‖kT . Since, clearly, ‖kD(a)Ω = a−kg‖d(a), the
proposition follows.4

The above propositions imply the following theorem.
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Theorem 17. For every matrix M = (M ′,M ′′) ∈ 1
dZr2g, where d and r = 2k are

even, satisfying the conditions (3.19) for all µ coprime to d, and every character ψ of
the group (Z/2d2Z)∗, the subspace Mk(Γg(d), χχχM ; ψ) ⊂ Mk(Γg(2d2)) is invariant
with respect to all regular Hecke operators for the group Γg(2d2).

The following lemma allows us to relate theta products to decompositions (3.23).

Lemma 18. Let M = (M ′,M ′′) ∈ 1
dZr2g, where d and r = 2k are even, be a matrix

satisfying the conditions (3.20). Then

(3.26) θθθ(Z, M)‖kd(b) = χkg2 (b)θθθ(Z, (bM ′, b̃M ′′)) (gcd(b, d) = 1),

where b̃ is an inverse of b modulo 2d2.

Proof. By (1.7), we have

θθθ(Z, M)‖kd(b) = χχχr(d(b))δ(M)δ(Md(b))θθθ(Z, Md(b)).

By (1.9), we can write χχχr(d(b)) = χ2(b)−kg = χkg2 (b). Since

Md(b) = (M ′,M ′′)
((

b1g 0
0 b̃1g

)
+ 2d2N

)
with an integral matrix N , from (1.10) we easily obtain equalities δ(Md(b)) =
δ(bM ′, b̃M ′′) = δ(M), and from (1.6) the relation θθθ(Z, Md(b)) = θθθ(Z, (bM ′, b̃M ′′)).
The relations (3.26) follows. 4

It follows from the lemma that, for each character ψ ∈ Char(Z/2d2Z)∗, the
projection (3.25) of the theta product θθθ(Z, M) can be written in the form

(3.27) θθθ(Z, M ; ψ) =
∑

a∈(Z/2d2Z)∗

ψ(a)χkg2 (a)θθθ(Z, (aM ′, ãM ′′)).

§4. Representations of congruence
similarity groups and Hecke eigenfunctions

According to Theorem 2, the image of a theta product θθθ(Z, M) under the action
of Hecke operator ‖kT corresponding to regular homogeneous T ∈ Hg(2d2) with
multiplier µ(T ) = µ is a linear combination of theta products θθθ(Z, DMωg(µ̃)) with
D contained in the set S+

r (µ) of proper integral similarities of qr with multiplier µ.
Unions of the similarity sets with multipliers prime to an integer d,

(4.1) S+
r [d] =

⋃
µ∈N,gcd(µ,d)=1

S+
r (µ),
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is a multiplicative semigroup, and it makes sense to consider action of the semi-
groups in appropriate abstract setting. For fixed d, g, r ∈ N, let us denote by
V(d) = Vr2g(d) the C-linear space of all complex-valued function F on the set 1

dZr2g
satisfying for every M = (M ′,M ′′) ∈ ( 1

dZrg, 1
dZrg) the conditions

(4.2) F (M + S) = e
{
2 tS′′M ′}F (M) for each S = (S′, S′′) ∈ (Zrg, Zrg),

and by F(d) = Fr2g(d) the subspace of all functions of F ∈ V(d) satisfying the
conditions

(4.3) F (UM) = F (M) for each U ∈ E+
r =

{
U ∈ SLr(Z)

∣∣∣ tUU = 1r
}
.

The conditions (4.2) imply that each function F of V(d) is uniquelly determined
by its values on the finite set of all r × 2g-matrices M = (mij) with entries of
the form mij = aij/d, where aij are integral numbers satisfying 0 ≤ aij < d.
Therefore, the space F(d) is finite-dimentional. According to relations (1.5) and
(1.6), the theta products θθθ(Z, M) with fixed Z ∈ Hg and characteristic matrices
M ∈ 1

dZr2g can be considered as elements of the subspace Fr2g(d). For a matrix
D ∈ S+

r [d], we define the operator ◦D on functions F : 1
dZr2g 7→ C by

(4.4) ◦D : F 7→ (F ◦D)(M) = F (DMωg(µ̃))

where µ̃ is an integral inverse of µ modulo d2.

Lemma 19. If F ∈ V(d) = Vr2g(d) and D ∈ S+
r [d], then the function F ◦D depends

only on D modulo d2 and again belongs to V(d).

Proof. If D1 ∈ S+
r [d], and D1 ≡ D (mod d2), then clearly µ1 = µ(D1) ≡ µ = µ(D)

(mod d2) and µ̃1 ≡ µ̃ (mod d2). It follows that matrix D1Mωg(µ̃1) − DMωg(µ̃)
integral and divisible by d, hence, by (4.2), (F ◦ D1)(M) = (F ◦ D)(M). If S =
(S′, S′′) ∈ (Zrg,Zrg), then we have

(F ◦D)(M + S) = F ((DM ′, µ̃DM ′′) + (DS′, µ̃DS′′))

= e{2µ̃ tS′′ tDDM ′}F ((DM ′, µ̃DM ′′)) = e{2 tS′′M ′}(F ◦D)(M). 4

From the lemma we conclude that each operator ◦D on the space V(d) does
not depend on the choice of the inverse µ̃, maps the space into itself, and that
the mapping D 7→ ◦D defines a linear representation of the semigroup S+

r [d], on
the space V(d). Moreover, the subspace F(d) ⊂ V(d) can be characterized as
the subspace of all E+

r -invariant functions of V(d). Therefore, according to the
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general scheme of definition of Hecke operators, we can define the standard linear
representation of the Hecke–Shimura ring

Lrd = H(E+
r , S+

r [d])

of the semigroup S+
r [d] relative to the subgroup E+

r (over C) on the space F(d) by
means of Hecke operators:

(4.5) t =
∑
α

aα(ErDα) ∈ Lrd : F (M) 7→ (F ◦ t)(M) =
∑
α

aα(F ◦Dα)(M).

Coming back to formulas of Theorem 2, we can now rewrite the right hand side
of formula (1.25) in the terms of Hecke operators (4.5). Note, first of all, that, by
Lemma 19, the inverse µ̃ of µ modulo 2d2 in Theorem 2 can be relaced by arbitrary
inverse of µ modulo d2. Since, by (1.28), the coefficients c(D,T ) on the right-hand
side of formula (1.25) depend only on the double coset E+

r DE+
r , one can write∑

D∈E+
r \S+

r (µ)

c(D,T )θθθ(Z, DMωg(µ̃))

=
∑

D∈E+
r \S+

r (µ)/E+
r

c(D,T )
∑

Dα∈E+
r \E+

r DE+
r

θθθ(Z, M) ◦Dα,

where operators ◦Dα on the right affect only argument M of the theta product. In
the terms of Hecke operators (4.5) one can write

(4.6)
∑

Dα∈E+
r \E+

r DE+
r

θθθ(Z, M) ◦Dα = θθθ(Z, M) ◦ (D),

where
(D) = (D)E+ =

∑
Dα∈E+\E+DE+

(E+Dα) ∈ Lrd

with E+ = E+
r are elements of the form (1.20) corresponding to double cosets

E+DE+. Therefore, the formula (1.25) takes the shape

(4.7) θθθ(Z, M)‖kT =
∑

D∈E+
r \S+

r (µ)/E+
r

c(D, T )θθθ(Z, M) ◦ (D).

Note that Hecke operators in two parts of this relation affects different arguments
of the theta product.

All matrices of the semigroup S+
r [d] considered modulo the equivalence relation

D′ ≡ D (mod q) with a fixed q ∈ N dividing a power of d form, obviously, finite
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congruence similarity group S+
r [d]/(q) which can be considered as the homomorphic

image of S+
r [d] under the map D 7→ D modulo q. In this case the group E+

r goes
to the factor group

(4.8) E+
r /(q) = Er/

{
D ∈ E+

r

∣∣ D ≡ 1r (mod q)
}
.

Let Lrd/(q) = H(E+
r /(q), S+

r [d]/(q)) be the HS–ring of pair E+
r /(q), S+

r [d]/(q).
Since the semigroup S+

r [d]/(q) is finite, the ring Lrd/(q) is a finite-dimensional C–
algebra. The map D 7→ D modulo q defines, clearly, an epimorphism of the rings

(4.9) /(q) : Lrd 7→ Lrd/(q).

Since, by Lemma 19, the operators (4.4) on spaces V(d) depend only on D modulo
d2, each of the Hecke operators (4.6) depends in fact only on the image (D)/(d2)
of the element (D) under the map (4.9) with q = d2:

F ◦ (D) = F ◦ (D)/(d2) ∀F ∈ V(d);

in particular,

(4.10) θθθ(Z, M) ◦ (D) = θθθ(Z, M) ◦ (D)/(d2).

The formulas (4.7) and (4.10) show that the theta product θθθ(Z, M) is an eigen-
function of the Hecke operator ‖kT if the function M 7→ F (M) = θθθ(Z, M) is an
eigenfunction for every Hecke operator ◦(D)/(d2) with (D)/(d2) ∈ S+

r [d]/(d2). Re-
turning for a moment to the situation of a general HS–ring H = H(Ω, ∆) of a
semigroup ∆ relative a subgroup Ω, we note that the left multiplication of elements
of the space C consisting of all finite formal linear combinations (over C) of left
cosets of ∆ modulo Ω by elements of H given by∑

α

aα(ΩMα)
∑
β

bβ(ΩNβ) =
∑
α,β

aαbβ(ΩMαNβ)

(
∑
α

aα(ΩMα) ∈ H,
∑
β

bβ(ΩNβ) ∈ C)

is independent of the choice of representatives Mα ∈ ΩMα, Nβ ∈ ΩNβ , satisfies
(TT ′)L = T (T ′L) for all T, T ′ ∈ H and L ∈ C, and so defines a representation of
the ring H on the space C. In the case of the ring H = Lrd/(d2) the corresponding
space of left cosets ∑

β

bβ(E+
r /(d

2) ·Dβ/(d2))
∣∣∣ bβ ∈ C


is finite-dimensional, and so we get a finite-dimensional representation of the ring
Lrd/(d2).
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Lemma 20. Let η(D) be a function on the semigroup S+
r [d] depending only on the

left coset E+
r /(d

2) ·D/(d2) of D in S+
r [d]/(d2). Suppose that the linear combination

of left cosets

(4.11) σ(η) =
∑

D/(d2)∈E+
r /(d2)\S+

r [d]/(d2)

η(D)(E+
r /(d

2) ·Dβ/(d2)),

where η(D) is the complex conjugate of η(D), is an eigenfunction with respect to
all left multiplications by elements of Lrd/(d2), in particular,

(D/(d2))σ(η) = λ(D; η)σ(η).

Then in the assumptions and notation of Theorem 2 the linear combination of theta
products

(4.12) θθθ(Z, M ; η) = θθθ(Z, M) ◦ σ(η) =
∑

D/(d2)∈E+
r /(d2)\S+

r [d]/(d2)

η(D)θθθ(Z, M) ◦D

is an eigenfunction for the Hecke operator ‖kT with the eigenvalue

(4.13) λ(T ; η) =
∑

D∈E+
r \S+

r (µ)/E+
r

c(D, T )λ(D; η).

Proof. By (4.12) and (4.7), we have

θθθ(Z, M ; η)‖kT
∑

D∈E+
r \S+

r (µ)/E+
r

c(D, T )θθθ(Z, M) ◦ (D) ◦ σ(η)

=
∑

D∈E+
r \S+

r (µ)/E+
r

c(D, T )λ(D; η)θθθ(Z, M) ◦ σ(η)

which proves the lemma. 4

In order to illustrate applications of the above techniques, we consider in more
detais the simplest case when r = 2.

The following statements on proper similarities of the quadratic form q2 = x2
1+x

2
2

are easy and direct consequences of definitions:

(i). E = E+
2 =

{(
1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)}
;

(ii). D =
(
a b
c d

)
∈ S+

2 (µ) ↔ a, b ∈ Z, a2 + b2 = µ, (c, d) = (−b, a);
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(iii). The mapping

S = S+
2 [d] 3 D =

(
a b
∗ ∗

)
7→ ξ(D) = a+

√
−1b ∈ O = Z[

√
−1]

is an isomorphism of the group S onto the subsemigroup O[d] of Gauss integers
coprime to d;

(iv). Each double coset EDE ⊂ S consists of a single left coset; if p is a prime
number satisfying p ≡ 1 (mod 4), then the set S+

2 (p) is the union of two different
cosets ED(p)E = ED(p) and ED′(p)E = ED′(p), where

(4.14) D(p) =
(
a b
−b a

)
, D′(p) =

(
a −b
b a

)
with a, b ∈ Z, a2 + b2 = p,

but if p is a prime number satisfying p ≡ 3 (mod 4), then the set S+
2 (p) is empty;

(v). The mapping
(ED) 7→ ξ(ED) = ξ(D)O[d],

extended by linearity on the HS–ring L = L2
d = H(E , S), is an isomorphism of the

ring onto the semigroup ring C[I(O[d])] of the semigroup I(O[d]) = O∗[d]/{±1,±
√
−1}

of all nonzero ideals of O[d].
(vi). The mapping (ED)/(q) 7→ ξ(D)Od/qO[d], where q ∈ N divide a power of d,

defines an isomorphism of the ring L/(q) with the ring of formal linear combinations
of ideal classes of O[d] modulo the equivalence relation αO[d] ∼ βO[d] (mod q) if
α ≡ εβ (mod q) with a unit ε = ±1,±

√
−1. The ideal classes form a finite Abelian

group, the class group H(I(O[d]/q)), and the ring of formal linear combinations
of the classes is just the group algebra of the class group (over C). From these
observations and Lemma 20 we obtain the following proposition.

Proposition 21. Let η be a character of the ideal class group H(I(O[d]/d
2)) ex-

tended on S. Then the linear combination (4.11) satisfies the condition of Lemma
20 with

λ(D; η) = η(D) (D ∈ S),

and, in the assumptions and notation of Theorem 2, the linear combination θθθ(Z, M ; η)
of theta products of the form (4.12) is an eigenfunction of the Hecke operator ‖1T
with the eigenvalue

(4.15) λ(T ; η) =
∑

(D)∈H(O[d]/d2)

c(D, T )η(D).

Now, we are able to compute the Euler products (2.14) corresponding to the
eigenfunction θθθ(Z, M ; η) for g = 1 and g = 2.
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Proposition 22. Let F = θθθ(Z, M ; η) ∈ M1(Γ1(2d2)) be a linear combination
of theta products of the form (4.12) with r = 2 and g = 1, where η is choosen
as indicated in Proposition 21. Then, in the assumptions of Theorem 2, F is an
eigenfunction for all Hecke operators corresponding to elements of the HS–ring
H1(2d2); Hecke zeta function of F has the form

Z(F, s) =
∏

prime p-d

Qp(F, p−s)−1,

where

(4.16) Qp(F, v) =
{

(1− η(D(p))v)(1− η(D′(p))v), if p ≡ 1 (mod 4)
1− η(p12)v2, if p ≡ 3 (mod 4),

and D(p) and D′(p) are the matrices (4.14).

Proof. It follows from Proposition 21 and Lemma 20 that F is an eigenfunction of
all Hecke operators ‖1T for homogeneous T ∈ H1(2d2) with the eigenvalues

(4.17) λ(T ; η) =
∑

D∈E+
2 \S

+
2 (µ(T ))/E+

2

c(D, T )η(D).

For T = T1(p) = q1
1(p), by (2.15),Proposition 6, and (iv), the formula (4.17) implies

the relatons

λ(q1
1(p), η) =

{
η(D(p)) + η(D′(p)), if p ≡ 1 (mod 4)
0, if p ≡ 3 (mod 4).

Similarly, by (4.16), (2.15), and Proposition 8, we obtain

λ(q1
2(p), η) = pλ(T1

1(p
2)) = χ2(p)η(p12).

Since χ2(p) = (−1)
p−1
2 , and

η(D(p))η(D′(p)) = η(D(p)D′(p)) = η(p12),

the formulas (4.16) follow. 4

Proposition 23. Let G = θθθ(Z, M ; η) ∈ M1(Γ2(2d2)) be a linear combination
of theta products of the form (4.12) with r = 2 and g = 2, where η is choosen as
indicated in Proposition 22. Then, in assumptions and notation of Theorem 2, G is
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an eigenfunction for all Hecke operators corresponding to elements of the HS–ring
H2(2d2); Andrianov zeta function of G has the form

Z(G, s) =
∏

prime p-d

Qp(G, p−s)−1,

where

(4.18) Qp(G, v) ={
(1− η(D(p))v)(1− η(D′(p))v)(1− η(D(p))pv)(1− η(D′(p))pv), if p ≡ 1 (mod 4),
(1− η(p12)v2)(1− η(p12)p2v2), if p ≡ −1 (mod 4),

and D(p) and D′(p) are the matrices (4.14).

Proof. It again follows from Proposition 21 and Lemma 20 that F is an eigenfunc-
tion of all Hecke operators ‖1T for homogeneous T ∈ H2(2d2) with the eigenvalues

(4.19) λ(T ; η) =
∑

D∈E+
2 \S

+
2 (µ(T ))/E+

2

c(D, T )η(D).

For T = T2(p) = q2
1(p), by (2.15),Proposition 6, and (iv), the formula (4.18) implies

the relatons

λ(q2
1(p), η) =

{
(1 + p)(η(D(p)) + η(D′(p))), if p ≡ 1 (mod 4)
0, if p ≡ 3 (mod 4).

By (2.16), (2.29), and (2.27), we have

c(D, q2
2(p)) =


χ2(p)p, if D ∈ S+

2 (p2)
⋂

Λ2D2
0,1(p)Λ

2,

χ2(p)p2 + (χ2(p) + 1)p+ χ2(p), if D ∈ E+
2 (p12),

0, otherwise,

where Λ2 = GL2(Z). It is easy to see that the intersection S+
2 (p2)

⋂
Λ2D2

0,1(p)Λ
2 is

the union of two different double cosets E+
2 D(p)2E+

2 and E+
2 D

′(p)2E+
2 , if χ2(p) = 1,

i.e. p ≡ 1 (mod 4), and is empty, otherwise. Therefore, we obtain

λ(q2
2(p), η) = pη(D(p)2) + pη(D′(p)2) + (p+ 1)2η(p12),

if p ≡ 1 (mod 4), and
λ(q2

2(p)) = −(p2 + 1)η(p12),
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if p ≡ 3 (mod 4). Further, by (2.15), (2.24), and (2.27), we get

λ(q2
3(p), η) = λ(p3T2

2(p)q
2
1(p), η)

= p3λ(T2
2(p

2), η)λ(q2
1(p), η) = pη(p12)λ(q2

1(p), η).

Finally, by (2.15) and (2.27), we conclude

λ(q2
4(p), η) = λ(p3T2

2(p
2), η)2 = p2η(p212).

The formulas (4.20) follow. 4

Note that the zeta functions of eigenfunctions F and G considered in last two
propositions for the same character η satisfy the relation

Z(G, s) = Z(F, s)Z(F, s− 1).

The next and even more interesting case is, of course, the case r = 4 and g = 2,
but to consider it one has first to sink into the depth of arithmetic of quaternions.
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