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Abstract

Automorph class theory formalism is developed for the case of integral nonsingular

quadratic forms in an odd number of variables. As an application, automorph class

theory is used to construct a lifting of similitudes of quadratic Z-modules of arbitrary

nondegenerate ternary quadratic forms to morphisms between certain subrings of

associated Clifford algebras. The construction explains and generalizes Shimura’s

correspondence in the case of theta-series of positive definite ternary quadratic forms.

The relation between associated zeta-functions is considered.
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Chapter 1

Introduction

1.1 Statement of results

In his important paper [12] G. Shimura discovered a remarkable correspondence be-

tween modular forms of half-integral weight and forms of integral weight – the so-

called “ Shimura lift ” (see [12, Main Theorem]). P. Ponomarev [10] determined the

effect of Shimura’s lifting on the theta-series Θ(z,q) of certain positive definite ternary

quadratic forms q. Using purely arithmetical approach he expressed the lift of Θ(z,q)

as an explicit linear combination of theta-series associated with a certain system of

quaternary quadratic forms coming from a quaternion algebra (see [10, Theorem 1]).

Considering the Fourier coefficients of corresponding theta-series, we can interpret

these results as a link between the numbers of representations of integers by positive

definite quadratic forms in three and in four variables. But in accordance with the

theory of automorph class rings (i.e., matrix Hecke rings of orthogonal groups) devel-

oped by A. Andrianov in [1] and [2], the majority of known multiplicative properties

of the numbers of integral representations by quadratic forms turn out to be merely a

reflection of certain relations between the representations themselves. Following the

ideas of A. Andrianov and P. Ponomarev, one can look for a direct algebraic corre-

spondence between the representations of integers by quadratic forms in three and

four variables that is expected to underlie Shimura’s lift in case of theta-series. In the

present paper we examine such a correspondence constructed by means of Clifford

algebras.

In the first part of the paper (Chapters 2, 3, and 4) we develop automorph class

theory formalism for the case of arbitrary integral nonsingular quadratic forms in an

odd number of variables. Because of the impossibility of applying the methods of

[1] directly, we introduce and study isotropic sums of a special type, computation of
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which is an essential technical prerequisite for determination of action of classes of

automorphs (or of Hecke operators) on integral representations by quadratic forms

in an odd number of variables (or on their theta-series respectively). Our principal

technical result on isotropic sums can be stated as follows.

Theorem . Let q be an arbitrary integral nonsingular quadratic form in an odd

number of variables m = 2k + 1 ≥ 3 , and let p be a rational prime not dividing

the determinant det q of the form q . Let {q1, . . . ,qh} be a complete system of

representatives of different equivalence classes contained in the similarity class of q .

Then for each integral column K ∈ Zm such that q[K] ≡ 0 (mod p2) we have

h∑
i=1

∑
M∈R∗(q,p2qi)/E(qi)

M |K

1 =

cp ·
{

1 +
(
εpχq(p)pk−1 + c−1

p βp
)
· δ(p−1K) + pm−2 · δ(p−2K)

}
,

where

cp = cp(q) =
k∑
a=1

a−1∏
i=1

p2(k−i) − 1

1− p−i
· p1−a ,

βp = βp(q) =
k∑
a=1

(a−1∏
i=1

p2(k−i) − 1

1− p−i
· p

m−2 − pa−1(p+ 1) + 1

pa−1(pa − 1)

)
,

the symbol εp = εp
(
q(p−1K)

)
and the quadratic character χq(p) are given by the

Legendre symbols

εp(a) =

(
2a

p

)
, a ∈ N and χq(p) =

((−1)k det q

p

)
,

respectively and δ(X) is the generalized Kronecker symbol

δ(X) =

{
1 , if X is an integral matrix,

0 , if matrix X is not integral.

(See also Theorems 2.9 and 2.11).
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Our method of computation is purely algebraic – based on consideration of certain

quadratic modules over residue class rings – and can be easily generalized to forms

over arbitrary Dedekind domains. In view of Shimura’s formula for the action of

Hecke operators T (p2) on modular forms of half-integral weight, as a corollary of the

above Theorem we obtained a new proof of Eichler’s commutation relations for the

theta-series of positive definite quadratic forms in an odd number of variables, see

(3.2). Moreover, the above Theorem allowed us to derive an automorph class theory

analog of Eichler’s commutation relations for arbitrary nonsingular integral quadratic

forms in an odd number of variables which explains and generalizes the classical

relations, see (4.4). We show further that the derived multiplicative decompositions

of classes of integral representations imply similar relations between the numbers

of such representations that resemble Shimura’s well-known factorizations of zeta-

functions of modular forms of half-integral weight (see [12]), and explain the latter in

the case of theta-series of positive definite quadratic forms.

Corollary . With the notation and under the assumptions of the above Theo-

rem,

∑
(n,det q)=1

R(n2a)

ns
=

∏
p 6 |det q

( [1]− χq(p)(2a
p )[p]pk−1−s

[1]− c−1
p (T∗(p2)− βp[p])p−s + [p2]pm−2−2s

)
·R(a) ,

where m = 2k + 1 ≥ 3 is odd and a is a square-free integer.

The second part of the present paper (Chapters 5, 6, and 7) contains an appli-

cation of the techniques developed to an explicit construction of certain algebraic

correspondence between ternary and quaternary quadratic forms. We use automorph

class theory to construct a lifting of similitudes of quadratic Z-modules of arbitrary

nonsingular ternary quadratic forms to morphisms between certain subrings of as-

sociated Clifford algebras. Our main result is contained in Theorems 7.5 and 7.7

together with Corollary 7.8. In the notation of Chapter 1, all this can be summarized

as follows.

Proposition . Let q be an integral nonsingular ternary quadratic form and let n
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be the integral quadratic form defined (up to integral equivalence) by the norm on the

even subalgebra of the Clifford algebra C(q) . Take {q1, . . . ,qh} and {n1, . . . ,nH} to

be complete systems of representatives of different equivalence classes of the similarity

classes of q and of n respectively. Let p be a prime number coprime to det q . Denote

by

T ∗q (pι) =
h⋃
i=1

E(qi)\R∗(qi, pιq) and T ∗n (pι) =
H⋃
j=1

E(nj)\R∗(nj , pιn)

the sets of classes of (primitive) automorphs of q and of n respectively (with multiplier

pι). Then there exists an injection Ψ : A 7→ ΨA, T ∗q (p2) → T ∗n (p2) , that admits

natural extension to an injection Υ : A 7→ ΥA, T ∗q (p2)→ T ∗n (p) , in such a way that

ΥA divides ΨA from the right. Conversely, for anyM∈ T ∗n (p) there exists a unique

A ∈ T ∗q (p2) such thatM divides ΨA from the right. This construction turns the set

∪jE(nj)\R(nj , pn) of classes of quaternary automorphs into a 2-fold covering of the

set ∪iE(qi)\R∗(qi, p2q)) of classes of ternary automorphs .

In view of Eichler’s commutation relations (3.5), (4.3), and (4.4), the above construc-

tion corresponds to Shimura’s lift (5.1) for generic theta-series of ternary positive

definite quadratic forms and generalizes the latter in a purely arithmetical way to the

case of arbitrary indeterminate (nonsingular) ternary quadratic forms.

Corollary . With the notation and under the assumptions of the above proposi-

tion, let q be positive definite. Then Shimura’s lift of the generic theta-series Θ{q}(z)

and the generic theta-series Θ{n}(z) of the norm n on the even Clifford subalgebra

C0(E,q) have the same eigenvalues p+ 1 for all Hecke operators T (p) with p 6 | det q.

(See also Theorem 7.3 and Corollary 7.4.)

Defined in this way, the automorph class lift (6.28) raises numerous questions which

still await solution. Some of the possibilities, including relations that involve associ-

ated zeta-functions, will be discussed in Concluding Remarks (Chapter 8).
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1.2 Notation and terminology

As usual, the letters Z,Q, and C denote the ring of rational integers, the field of

rational numbers and the field of complex numbers, respectively. We put H = {z ∈
C ; Im z > 0} to be the upper half plane. Amn is the set of all (m×n)–matrices with

entries in a set A, Am = A
m
1 , An = A

1
n. We let Λm = GLm(Z) denote the group of

all integral invertible matrices of oder m and 1m stand for the unit matrix of oder m.

If M is a matrix, then tM denotes its transposed, M̃ is its adjoint and |M | stands

for the absolute value of its determinant (for square matrices M). We write

L[M ] = tMLM ,

if the product of matrices on the right makes sense. We consider a quadratic form

q(X) =
∑

1≤i≤j≤m
qijxixj , X =


x1
...

xm

 ,

in m variables with rational integral coefficients qij . The symmetric matrix

Q = (qij) + t(qij)

is called the matrix of the form q and its determinant detQ = det q is the determinant

of q. A quadratic form q is nonsingular if det q 6= 0 . Clearly,

2q(X) = Q[X] .

Note that Q is an even matrix (i.e., an integral symmetric matrix whose diagonal

elements are even). The level of q (and of Q) is defined to be the least positive

integer ` such that `Q−1 is even. It should be noted that ` and det q have the same
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prime divisors. If A ∈ Qmn with some m,n ∈ N, then q[A] denotes the quadratic form

q′(Y ) =
1

2
Q′[Y ] = q(AY ) =

1

2
Q[AY ] , Y =


y1
...

yn

 ,

resulting from q by the linear change of variables X = AY . The matrix A is called

a representation (over Q ) of the form q′ by the form q. In case A ∈ Zmn , we call it

an integral representation of q′ by q and denote by

R(q,q′) = {A ∈ Zmn ; q[A] = q′} = {A ∈ Zmn ; Q[A] = Q′} ,

the set of all such integral representations. In particular, if n = 1 and q′ = ay2

then the set R(q,q′) coincides with the set R(q, a) of (integral) representations of

the number a by q :

R(q, ay2) = R(q, a) = {X ∈ Zm ; q(X) = a} .

In case q = q′ we get E(q) = R(q,q)∩Λm, the group of units of the form q. Subset

of R(q,q′) consisting of matrices whose entries are coprime is denoted by R∗(q,q′),

and its elements are called primitive (integral) representations of q′ by q . We set

r(q,q′) = |R(q,q′)| , r∗(q,q′) = |R∗(q,q′)| , r(q, a) = |R(q, a)| ,

e(q) = |E(q)|

to be the corresponding cardinalities. Finally, the abbreviation gcd stands for greatest

common divisor.



Chapter 2

Isotropic sums

If q and q′ are integral quadratic forms in the same number of variables with equal

determinants, we say that q′ is similar to q if R(q, aq′) is not empty for some a prime

to det q. The set of all quadratic forms similar to q is called the similarity class of

q. The Minkowski reduction theory of quadratic forms (see [3], for example) shows

that the similarity class of a nonsingular integral quadratic form in m variables is a

finite union
h⋃
i=1
{qi[U ] ; U ∈ GLm(Z)} ,

of mutually disjoint classes of integrally equivalent quadratic forms. (The similar-

ity class may be compared with the genus of q. Although in general the two sets

are different, both consist of quadratic forms with arithmetical invariants equal to

those of q. Moreover, both sets are finite disjoint unions of classes modulo integral

equivalence.)

For similar quadratic forms q and q′ the elements of the set R(q, aq′) are called

automorphs (of q to q′) with multiplier a.

Lemma 2.1. For any integral nonsingular quadratic forms q and q′ and for any

nonzero number a ∈ Z the set R(q, aq′) of automorphs with multiplier a is a finite

union of left cosets modulo E(q) .

Proof. Letm denote the rank of q and q′ and letQ,Q′ be their respective matrices.

If M ∈ R(q, aq′) then Q[M ] = aQ′ . Considering corresponding determinants we

have |M | =
(
am det q / det q′

)1/2
= |a|m/2 ∈ Z which means that R(q, aq′) ⊂

∆m
(
|a|m/2

)
, where

∆m(d) = {D ∈ Zmm ; | detD| = d} (2.1)

7
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for a positive integer d . We claim that ∆m(d) is a finite union of left cosets modulo

Λm (see Notations). To establish this we note first that according to the theory of el-

ementary divisors (see [3, Lemma 3.2.2]) each double coset ΛmDΛm , D ∈ ∆m(d) has

a unique representative of the form ed(D) = diag(d1, . . . , dm) with di > 0 , di|di+1

and so the cardinality |Λm\∆m(d)/Λm| is bounded above by number of factorizations

d =
∏m
i=1 di, di > 0, di|di+1 , which means that ∆m(d) is a finite disjoint union of

double cosets modulo Λm . Next we note that each of these double cosets is a finite

(disjoint) union of left cosets:

ΛmDΛm =
⋃

D′∈D·((D−1ΛmD ∩ Λm)\Λm)

ΛmD′ ,

because ΛmDU = ΛmD with U ∈ Λm if and only if U ∈ D−1ΛmD ∩ Λm and the

latter subgroup has finite index in Λm . To justify the last claim consider the principle

congruence subgroup of level d of Λm:

Λm(d) = {M ∈ Λm ; M ≡ 1m (mod d)} .

Clearly Λm(d) has a finite index in Λm as the kernel of reduction modulo d : Λm →
GLm(Z/dZ) . On the other hand Λm(d) ⊂ D−1ΛmD since entry-wise DΛm(d)D̃ ≡
DD̃ ≡ 0 (mod d) and so DΛm(d)D−1 = (±d)−1DΛm(d)D̃ ⊂ Λm , here D̃ is the

matrix adjoint to D . Thus D−1ΛmD ∩ Λm contains subgroup Λm(d) of finite index

in Λm , which means that D−1ΛmD ∩ Λm is itself of finite index in Λm . Summing

up, we see that ∆m(d) is a finite (disjoint) union of double cosets each of which is

a finite (disjoint) union of left cosets modulo Λm and thus ∆m(d) is indeed a finite

union of left cosets modulo Λm .

It remains to note that R(q, aq′) ⊂ ∆m
(
|a|m/2

)
is therefore also a finite union of

left cosets modulo Λm . But each left coset ΛmM ∩R(q, aq′) consists of a single left

coset E(q)M (if not empty), because if UM = M ′ ∈ R(q, aq′) with U ∈ Λm then

Q[U ] = Q[M ′M−1] = aQ′[M−1] = Q , i.e. U ∈ E(q) . We conclude that R(q, aq′) is

a finite union of left cosets modulo E(q) .



9

The above property of automorphs will allow us to construct certain Hecke alge-

bras of orthogonal groups in section 3. Then the obvious inclusion

R(q, aq′) ·R(q′, b) ⊂ R(q, ab)

for any quadratic forms q,q′ and for any integers a, b (the dot refers to the usual

matrix multiplication) will help us to define an action of these Hecke algebras on rep-

resentations of integers by quadratic forms. In order to prepare for later quantitative

investigation of that action, we first need to address the question of inverse inclusion,

i.e. we need to factor a given element K ∈ R(q, ab) into a product of an automorph

M ∈ R(q, aq′) and a representation L ∈ R(q′, b) . We also want to find total number

of such factorizations. For our purposes it is enough to restrict attention to the case

when the automorph multiplier a is a power of a fixed prime p and quadratic forms

q,q′ are similar. Moreover, it appears that consideration of just two automorph mul-

tipliers a = p or a = p2 is completely sufficient for all situations (see [2]). The case

of quadratic forms in an even number of variables and automorph multiplier p was

treated in great detail in [1]. Our first goal is to conduct a similar investigation for

the case of quadratic forms in and odd number of variables and automorph multiplier

p2 (it is easy to see that p2 is the least power of an automorph multiplier possible for

quadratic forms in an odd number of variables, see the proof of the Lemma 2.1).

Thus, given K ∈ R(q, p2b) we seek to find total number of factorizations K = ML

with M ∈ R(q, p2q′), L ∈ R(q′, b) , where q,q′ are similar integral quadratic forms

in an odd number of variables m = 2k + 1 ≥ 3 and p is a prime coprime to det q .

Following general method of investigation of questions of this type developed in [1],

we will view a matrix M ∈ R(q, p2q′) as a solution of quadratic congruence

q[M ] ≡ 0 (mod p2) ,

whose matrix of elementary divisors Dp has a specific form.

Lemma 2.2. Let q,q′ be similar integral quadratic forms in an odd number of
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variables m = 2k + 1 ≥ 3 and let p be a prime coprime to det q . Then

R(q, p2q′) =

R
∗(q, p2q′) , if q and q′ are not integrally equivalent,

R∗(q, p2q′) ∪ pR(q,q′) , otherwise,

where R∗(q, p2q′) is the set of primitive automorphs, R(q,q′) ⊂ Λm , and the union

on the right hand side is disjoint. Furthermore, the matrix of elementary divisors of

an automorph from pR(q,q′) is equal to p1m and the matrix of elementary divisors

of a primitive automorph has the form

Dp = Dp(d) =


1d

p1b

p21d

 (2.2)

for some d, 1 ≤ d ≤ k , here k = (m− 1)/2 and b = m− 2d .

Proof. LetM ∈ R(q, p2q′) be an automorph and let µ denote the greatest common

divisor of its entries. Since q[M ] = p2q′ then | detM | = |M | = pm , which implies

that µ|p and so either µ = 1 and M ∈ R∗(q, p2q′) or µ = p and p−1M ∈ R(q,q′) . We

also note that any elementary divisor of M is a power (at most mth) of p . Next, since

q and q′ are similar, and in particular have equal determinants, then R(q,q′) ⊂ Λm

and therefore this set is empty if q and q′ are not integrally equivalent. It is also

clear that any double coset from ΛmpR(q,q′)Λm ⊂ pΛm coincides with Λmp1mΛm .

Furthermore, if M ∈ R∗(q, p2q′) , then p2M−1 = (p2/ detM)·M̃ = (det q)−1Q̃′ tMQ

is an integral matrix since detM and det q are coprime. Therefore the matrix Dp of

elementary divisors of M has the form diag(1s0 , p1s1 , p
21s2) with s0 + s1 + s2 = m

and s1 + 2s2 = m , which leaves us with so = s2 = d and 1 ≤ d ≤ (m− 1)/2 .

Thus if M ∈ R∗(q, p2q′) , then q[M ] ≡ 0 (mod p2) and M ∈ ΛmDpΛ
m for a ma-

trix Dp of the form (2.2). Next, since at the moment we do not want to distinguish a

particular form q′ in its equivalence class {q′[U ] ; U ∈ Λm}, we will be interested only

in different cosets MΛm ∈ ΛmDpΛ
m/Λm (and thus only in cosets R∗(q, p2q′)/E(q′)

after a choice of particular form q′). Finally, because our interest is in factorizations

of a particular column K ∈ Zm such that q(K) ≡ 0 (mod p2) , we will consider only
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those M which divide from the left such a K . To this end we introduce isotropic

sums of the form

Sp2(q, Dp, K) =
∑

M∈ΛmDpΛm/Λm

q[M ]≡ 0 (mod p2) ,M |K

1 . (2.3)

We will use geometric methods to compute the above sum. The following notions

and results will help us to reinterpret it in geometric terms.

Lemma 2.3. Let δ be a positive integer and p be a rational prime. For a matrix

M ∈ Zmn with m > n the following statements are equivalent:

i) There exists a primitive matrix M ′ ∈ Zmn such that M ′ ≡ M (mod pδ) .

ii) Columns of M are linearly independent modulo p .

iii) The matrix M can be complemented to a matrix (MM ′′) ∈ Z
m
m such that

(MM ′′) ≡ U (mod pδ) with U ∈ Λm .

Proof. First of all, recall that an integer matrix is called primitive if and only

if the greatest common divisor of its principal minors is equal to 1. Note that if

M ′ is primitive then not all of its principal minors are zero and so its rankZ is

equal to n . Then rank(Z/pδZ)M = rank(Z/pδZ)M
′ = n , i.e. columns of M are

linearly independent modulo pδ . It remains to note that for an arbitrary δ , linear

independence modulo pδ is equivalent to linear independence modulo p . Thus i)

implies ii). Conversely, suppose that columns of M are linearly independent modulo p

(and thus modulo pδ). Then rank(Z/pδZ)M = n and using elementary transformations

over Z/pδZ one can find A ∈ Λm such that

AM ≡



a1 . . . 0
...

. . .
...

0 . . . an

pδ . . . pδ

0 . . . 0
...

. . .
...

0 . . . 0


= L (mod pδ)
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with
∏
ai 6≡ 0 (mod p) . Moreover, choosing appropriate representatives modulo pδ

one can assume that ai’s are pairwise coprime. Clearly such L is primitive. Then

M ′ = A−1L is congruent to M modulo pδ and also primitive since multiplication by

an invertible matrix preserves primitiveness. (Indeed, using Binet-Cauchy formula,

one can see that any principal minor of L has the form

∣∣∣(A ·M ′)1,...,n
γ1,...,γn

∣∣∣ =
∣∣∣(A)1,...,m

γ1,...,γn
· (M ′)1,...,n

1,...,m

∣∣∣ =∑
1≤α1<...<αn≤m

∣∣∣(A)
α1,...,αn
γ1,...,γn

∣∣∣ · ∣∣∣(M ′)1,...,n
α1,...,αn

∣∣∣
i.e. it is an integral linear combination of minors of oder n of M ′ . Therefore gcd

of principal minors of M ′ divides gcd of those of L which is equal to 1 since L is

primitive.) This establishes equivalence of i) and ii).

To prove equivalence of i) and iii) it is enough to show that a matrix U ′ ∈ Zmn
is primitive if and only if it can be complemented to U = (U ′, U ′′) ∈ Λm . This was

done in a much more general setting (for matrices over arbitrary Dedekind rings) in

[1, Lemmas 2.3, 2.4 and 2.5]. Here we will present another explanation of this fact

for our particular case of integral matrices. If U ′ ∈ Zmn can be complemented to

U = (U ′, U ′′) ∈ Λm , then there exists U−1 = t(tAtB) with A ∈ Znm, B ∈ Zm−nm . So

we have:

U−1 · U =

(
AU ′ AU ′′

BU ′ BU ′′

)
= 1m ,

in particular AU ′ = 1n . Applying Binet-Cauchy formula one has:

∑
1≤γ1<...<γn≤m

∣∣∣(A)
γ1,...,γn
1,...,n

∣∣∣ · ∣∣∣(U ′)1,...,n
γ1,...,γn

∣∣∣ = det(A · U ′) = 1 ,

which means that an integral linear combination of principal minors of U ′ is equal to

1, i.e. their gcd is 1 and U ′ is primitive.

Conversely, assume first that n = 1 and U ′ ∈ Zm is a primitive column. Using

induction on m ≥ 2 we want to prove that U ′ can be complemented to an invertible

matrix. In the base case m = 2 one has U ′ = t(u1, u2) with gcd(u1, u2) = 1 .
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Therefore xu1 + yu2 = 1 for some x, y ∈ Z and then

(
u1 −y
u2 x

)
∈ Λ2

as intended. If m > 2 and U ′ = t(u1, . . . , um) is primitive, then either u2 = . . . =

um = 0 and we can take

U =


u1 . . . 0
... 1m

0

 ∈ Λm

since u1 = ±1 , or some of u2, . . . , um are not zero and by induction hypothesis we can

complement the primitive column V ′ = t(u2/d, . . . , um/d) ∈ Zm−1 to an invertible

matrix (V ′V ′′) ∈ Λm , here d = gcd(u2, . . . , um) . Note that gcd(u1, d) = 1 as U ′ is

primitive, so xu1 + yd = 1 for some x, y ∈ Z and then

U =

(
u1 0 y

dV ′ V ′′ xV ′

)
∈ Λm

since detU = xu1(−1)m−1 + yd(−1)m+1 = ±1 . Thus any primitive column can be

complemented to an invertible matrix. Next assume that n > 1 , U ′ ∈ Zmn is primitive

and t(u1, . . . , um) is the first column of U ′ . For any selection 1 ≤ i1 < . . . < in ≤
m, gcd(ui1 , . . . , uin) divides the minor

∣∣∣(U ′)1,...,n
i1,...,in

∣∣∣ and so gcd(u1, . . . , um) = 1 as gcd

of minors of oder n of U ′ is equal to 1. Therefore
∑m
i=1 xiui = 1 for some xi ∈ Z . The

column t(x1, . . . , xm) is primitive, and as we already know it can be complemented to

a matrix X ∈ Λm . Then tXU ′ is primitive with (tXU ′)11 = 1 . Applying elementary

transformations to rows of tXU ′ we can find matrix Y ∈ Λm , such that

Y U ′ =


1 . . . ∗
... V ′

0

 ∈ Zmn
is again a primitive matrix whose minors of oder n are either 0 (in case the minor does

not include the first row), or have the form
∣∣∣∣(V ′)1,...,n−1

i1,...,in−1

∣∣∣∣ , 1 ≤ i1 < . . . < in−1 ≤ m .

The latter implies that gcd of principal minors of V ′ is 1, i.e. V ′ ∈ Zm−1
n−1 is also
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primitive and we can recursively apply the above procedure to it. Continuing in this

fashion one can find a matrix Z ∈ Λm such that

ZU ′ =



1 . . . ∗
...

. . .
...

0 . . . 1
...

...

0 . . . 0


∈ Zmn ,

then the matrix W =
(
ZU ′ | 0

1m−n

)
is clearly invertible and we can take U =

(U ′, U ′′) = Z−1 ·W to complement U ′ to an invertible matrix.

We will consider quadratic modules of the form

V
pδ

(1m) =
(
(Z/pδZ)m , q mod pδ

)
(2.4)

obtained by reduction modulo pδ of quadratic module (Zm,q) whose Gramm matrix

with respect to the standard basis of Zm is Q , the matrix of q . For a matrix M ∈ Zmn
we will denote by V

pδ
(M) the quadratic submodule of

(
(Z/pδZ)m , q mod pδ

)
spanned

by the columns of M modulo pδ .

Lemma 2.4. Let Dp = Dp(d) be a matrix of the form (2.2) and let M ∈
ΛmDpΛ

m . Then the map M 7→ Vp2(M) defines a bijection of the set of right cosets

MΛm ⊂ ΛmDpΛ
m/Λm to the set of all subgroups of

(
Z/p2

Z

)m
whose invariants are

(p2, . . . , p2︸ ︷︷ ︸
d

, p, . . . , p︸ ︷︷ ︸
b

) , here b = m− 2d .

Proof. First of all we note that if M ′ ∈MΛm then clearly Vp2(M ′) = Vp2(M) as

generators of any of these two groups are integral linear combinations of generators of

the other. Thus our map is defined coset-wise. Next, let M = UDpV with U, V ∈ Λm

and let Ui’s denote the columns of U . Then each Vp2(Ui), 1 ≤ i ≤ d is a cyclic group

of oder p2 and each Vp2(pUi), d ≤ i ≤ d + b is a cyclic group of oder p . (To see this

note that if n is the oder of a column W ∈
(
Z/p2

Z

)m
then nW ≡ 0 (mod p2) and so

W ≡ 0 (mod p2/n) . But the greatest common divisor of elements of any of Ui’s is
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equal to 1 , since U ∈ Λm . Thus the oder of W = Ui is p2 and the oder of W = pUi

is p .) Next we claim that

Vp2(M) = Vp2(U1)⊕ . . .⊕ Vp2(Ud)⊕ Vp2(pUd+1)⊕ . . .⊕ Vp2(pUd+b) ,

i.e. Vp2(M) is a direct sum of d cyclic subgroups of oder p2 and b cyclic subgroups of

oder p . Indeed,

Vp2(M) = Vp2(UDp) = Vp2(U1, . . . Ud, pUd+1, . . . , pUd+b) =

Vp2(U1) + . . .+ Vp2(Ud) + Vp2(pUd+1 + . . .+ Vp2(Ud+b)

and we just need to show that the above sum is direct. To see this, consider the

following: if
d∑
i=1

αiUi + p
d+b∑

j=d+1
αjUj ≡ 0 (mod p2)

then U−1 · (U1, . . . , Ud+b) · t(α1, . . . , αd, pαd+1, . . . , pαd+b) ≡ 0 (mod p2), which im-

plies that p2|αi for 1 ≤ i ≤ d and p|αj for d ≤ j ≤ d + b . Thus the zero of the

group can be written only as the sum of zeros of the subgroups, i.e. the sum is indeed

direct. Therefore the invariants of Vp2(M) are (p2, . . . , p2, p, . . . , p) .

Conversely, assume that G ⊂
(
Z/p2

Z

)m
is a subgroup with this set of invariants,

i.e.

G = Vp2(K1)⊕ . . .⊕ Vp2(Kd)⊕ Vp2(L1)⊕ . . .⊕ Vp2(Lb) ,

where the oder of each Ki is p2 and the oder of each Li is p . Since pLi ≡ 0 (mod p2)

then p|Li for 1 ≤ i ≤ b . The integral columns K1, . . . , Kd, p
−1L1, . . . , p

−1Lb are

linearly independent modulo p (because the sum of the cyclic groups generated byKi’s

and Lj ’s is direct). Therefore, according to the Lemma 2.3 there exists a primitive

matrix A ∈ Zmd+b such that A ≡ K1, . . . , Kd, p
−1L1, . . . , p

−1Lb) (mod p2) which can

be complemented to an integral invertible matrix A′ ∈ Λm for which

G = Vp2(K1, . . . , Kd, L1, . . . , Lb) = Vp2(A1, . . . , Ad, pAd+1, . . . Ad+b) = Vp2(A′Dp) .
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Thus anyG ⊂
(
Z/p2

Z

)m
with invariants (p2, . . . , p2, p, . . . , p) has the form Vp2(A′Dp)

for some A′ ∈ Λm .

The above Lemma allows us to replace summation over M ∈ ΛmDpΛ
m/Λm

in (2.3) by summation over different submodules Vp2(M) ⊂
(
Z/p2

Z

)m
with M ∈

ΛmDpΛ
m . Furthermore, conditions q[M ] ≡ 0 (mod p2) , M |K in (2.3) mean ex-

actly that Vp2(M) should be an isotropic submodule of quadratic module Vp2(1m) =(
(Z/p2

Z)m, q mod p2
)

containing a fixed vector K . In order to find the total num-

ber of such submodules (and thus to compute the isotropic sum (2.3)), we will first

determine the total number of bases of certain kind which generate modules of type

Vp2(M) , M ∈ ΛmDpΛ
m and then factor this number by the number if different bases

generating the same module. We start with exhibiting the bases of Vp2(M) we are

interested in. We choose

{U ·Dp ; U ∈ Λm/(DpΛ
mD−1

p ∩ Λm)}

as a complete system of representatives from classes MΛm ∈ ΛmDpΛ
m/Λm and let

Ui , 1 ≤ i ≤ m denote the columns of matrix a U . Then any isotropic module

Vp2(M) = Vp2(UDp) = Vp2(U1, . . . , Ud, pUd+1, . . . , pUd+b), where b = m− 2d .

Using Lemma 2.3 we replace condition U ∈ Λm with requirement that U1, . . . , Ud+b

should be linearly independent modulo p . Then the condition q[M ] ≡ q[UDp] ≡
0 (mod p2) should be replaced with


tUiQUj ≡ 0 (mod p2) , if 1 ≤ i ≤ j ≤ d ,

tUiQUj ≡ 0 (mod p) , if 1 ≤ i ≤ d and d+ 1 ≤ j ≤ d+ b .
(2.5)

Conversely, it is easy to see that any (ordered) collection {U1, . . . , Ud+b} ⊂ (Z/

p2
Z)d × (Z/pZ)b of linearly indepemdent modulo p vectors satisfying (2.5) defines a

basis

U1, . . . , Ud, pUd+1, . . . , pUd+b (2.6)
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of an isotropic module of the form Vp2(M), M ∈ ΛmDpΛ
m . From now on, when refer-

ring to a basis of the form (2.6), we will always assume that vectors {U1, . . . , Ud+b} ⊂
(Z/p2

Z)d× (Z/pZ)b are linearly independent modulo p and satisfy (2.5). Let us find

the total number of such bases.

Lemma 2.5. Under the above notations there exist

pd(m+b−1) ·
∣∣∣GLb(Fp)∣∣∣ · d−1∏

s=0
(p2(k−s) − 1) , where k = (m− 1)/2 ,

different (ordered) bases of the form (2.6).

Proof. We note first that U1, . . . , Ud should form an isotropic system of vectors of

the quadratic module Vp2(1m) , see (2.4), i.e. a system of linear independent modulo

p vectors spanning an isotropic submodule. In particular they should also form an

isotropic system of d vectors in Vp(1m) . The number of isotropic systems in Vp(1m)

consisting of d vectors was computed in [3, Proposition A.2.14] and equals to

pd(d−1)/2(p2k − 1)(p2(k−1) − 1) · . . . · (p2(k−d+1) − 1) .

It remains to compute in how many ways such a system modulo p can be lifted to

an isotropic system in Vp2(1m) . Note that any vector L ∈ (Z/pZ)m splits into pm

different vectors of the form L + pX in (Z/pZ)m . Therefore, if {L1, . . . , Ld} is an

isotropic system in Vp(1m) , then {L1 + pX1, . . . , Ld + pXd} would form an isotropic

system in Vp2(1m) if and only if

t(Li + pXi)Q(Lj + pXj) ≡ tLiQLj + p(tLiQXj + tXiQLj) ≡ 0 (mod p2)

for 1 ≤ i ≤ j ≤ d . (We do not worry about linear independence of the vectors

because linear independence modulo pδ is equivalent for any δ to linear independence

modulo p , as we already noted in the proof of Lemma 2.3.) The above congruences

form a system of d(d+ 1)/2 linear equations (over Fp) with respect to md unknowns

– elements of columns Xi . Since columns Li , 1 ≤ i ≤ d are linearly independent

modulo p , the rank of the matrix of this linear system as well as the rank of its
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extended matrix is equal to d(d+ 1)/2 and therefore the system has

pdm−d(d+1)/2 (2.7)

solutions in Fp . (Note that this is exactly the number of different isotropic systems

in Vp2(1m) which lie above a fixed isotropic system in Vp(1m) .) We conclude that

there exist

pmd−d(d+1)/2 · pd(d−1)/2 ·
d−1∏
s=0

(p2(k−s) − 1) = pd(m−1) ·
d−1∏
s=0

(p2(k−s) − 1)

different isotropic systems {U1, . . . , Ud} ⊂ Vp2(1m) . In how many ways such a system

can be extended to an isotropic basis of the form (2.6)? From (2.5) one can see that

each Uj , d ≤ j ≤ d+ b should be orthogonal to the linear span of U1, . . . , Ud , i.e. it

should satisfy the following system of linear equations


tU1Q

...

tUdQ

 ·

y1
...

ym

 ≡ 0 (mod p)

over Fp . The above system has m−d = d+b linear independent (modulo p) solutions.

Besides, each of Ui , 1 ≤ i ≤ d is its solution. Therefore the remaining (ordered) set

Ui , d+ 1 ≤ i ≤ d+ b can be chosen in

pdb ·
∣∣∣GLb(Fp)∣∣∣ (2.8)

different ways. Multiplying (2.8) by the number of different isotropic systems of d

vectors in Vp2(1m) computed above, we deduce the result of the Lemma.

Next we need to determine which of the bases in question generate the same

isotropic module. Assume that {U1, . . . , pUd+b} and {V1, . . . , pVd+b} are two (or-

dered) bases of the form (2.6) such that Vp2(U1, . . . , pUd+b) = Vp2(V1, . . . , pVd+b) .

Then

(V1, . . . , pVd+b) ≡ (U1, . . . , pUd+b) ·
(
A B

C D

)
(mod p2) ,
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where A ∈ Zdd , B ∈ Z
d
b , C ∈ Z

b
d , D ∈ Z

d
d . Because (U1, . . . , Ud+b) ·

(
B

pD

)
≡

0 (mod p) , then necessarily B ≡ 0 (mod p) . Since vectors

(V1, . . . , Vd+b) ≡ (U1, . . . , Ud+b) ·
(
A p−1B

pC D

)
(mod p2)

are linearly independent modulo p , then the system of congruences

(
A p−1B

pC D

)
·


γ1
...

γd+b

 ≡ 0 (mod p)

should have only trivial solution, for which it is necessary and sufficient that

(
A p−1B

pC D

)
∈ GLd+b(Fp) ,

i.e. A ∈ GLd(Fp) and D ∈ GLb(Fp) . Therefore two sets of vectors {U1, . . . , pUd+b}
and {V1, . . . , pVd+b} generate the same isotropic module only if they differ by a matrix

from the group

Γ =
{(A B

C D

)
∈ GLd+b(Z/p

2
Z) ;

A ∈ GLd(Z/p2
Z), D ∈ GLb(Z/p2

Z), B ≡ 0 (mod p)
}
. (2.9)

Clearly the converse is also true. Thus Γ acts transitively on the set of bases of the

form (2.6) of an isotropic module of type Vp2(UDp) . Let Γ′ denote stabilizer of a

basis (U1, . . . , Ud, pUd+1, . . . , pUd+b) under this action and let

(
A B

C D

)
∈ Γ′ , i.e.

(U1, . . . , Ud, pUd+1, . . . , pUd+b) ·
(

1d − A B

C 1b −D

)
≡ 0 (mod p2) .

Because Ui’s are linearly independent over Fp , the last congruence is equivalent to
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the set of conditions:

A ≡ 1d (mod p2) , B ≡ 0 (mod p2) , C ≡ 0 (mod p) , D ≡ 1b (mod p) .

Combining this with (2.9) one can see that the cardinality of Γ modulo the stabilizer

Γ′ is given by ∣∣∣Γ/Γ′∣∣∣ = pd(d+2b) ·
∣∣∣GLb(Fp)∣∣∣ · ∣∣∣GLb(Fp)∣∣∣

and this is the number of different bases of form (2.6) generating some fixed isotropic

module of the type Vp2(UDp), U ∈ Λm . Using Lemma 2.5 we conclude that the

number of different isotropic modules of the type we are interested in is equal to

Sp2(q, Dp, 0) = pd(d−1) ·
∣∣∣GLd(Fp)∣∣∣−1 ·

d−1∏
s=0

(p2(k−s) − 1) , (2.10)

where k = (m− 1)/2 and 0 ∈ Zm is the zero vector. We note also that since the zero

vector belongs to any submodule of Vp2(1m) , then Sp2(q, Dp, K) = Sp2(q, Dp, 0) in

case K ≡ 0 (mod p2) , see (2.3).

In order to finish our computation of isotropic sums (2.3), we still need to find the

number of isotropic modules of the form Vp2(UDp), U ∈ Λm , which contain a fixed

nonzero isotropic vector K ∈ (Z/p2
Z)m . It will be more convenient to consider two

separate cases: either K 6≡ 0 (mod p) , or K ≡ 0 (mod p) but K 6≡ 0 (mod p2) .

Lemma 2.6. Under the above notations, assume that K 6≡ 0 (mod p) . Then

there exist

Sp2(q, Dp, K) = (pd − 1) · p(d−1)2 ·
∣∣∣GLd(Fp)∣∣∣−1 ·

d−1∏
s=1

(p2(k−s) − 1)

different isotropic modules of the form Vp2(UDp), U ∈ Λm , which contain the vector

K .

Proof. If K ∈ Vp2(UDp) = Vp2(U1, . . . , pUd+b) and K 6≡ 0 (mod p) then

this vector can be complemented to a basis {V1, . . . , K, . . . , Vd, pVd+1, . . . , pVd+b}
of Vp2(UDp) . As we already know, such a basis differs from {U1, . . . , pUd+b} only by
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a matrix from Γ , see (2.9). Moreover, if

K ≡
d∑
i=1

γiUi + p
d+b∑

j=d+1
γjUj (mod p2) , (2.11)

then among the first d columns of a matrix from Γ which transforms {U1, . . . , pUd+b}
into {V1, . . . , K, . . . , Vd, pVd+1, . . . , pVd+b} there should be a column of the form

t(γ1, . . . , γd, γ
′
d+1, . . . , γ

′
d+b) with γ′j ≡ γj (mod p) for d+ 1 ≤ j ≤ d+ b .

Since there exist exactly

d

pd − 1
·
∣∣∣GLd(Fp)∣∣∣ · ∣∣∣GLb(Fp)∣∣∣ · pd2+b2+3db−d−b

different matrices from Γ with this property, then dividing by the oder of the stabilizer

|Γ′| we deduce that a fixed isotropic module Vp2(UDp) contains

d

pd − 1
·
∣∣∣GLd(Fp)∣∣∣ · ∣∣∣GLb(Fp)∣∣∣ · pd2+2db−d−b (2.12)

different bases of the form {V1, . . . , K, . . . , Vd, pVd+1, . . . , pVd+b} . Now we just need

to find the total number of bases of the form (2.6) which contain K among their

first d vectors. We will proceed in a fashion similar to the proof of Lemma 2.5: first

we compute the number of isotropic systems of d vectors in (Z/p2
Z)m containing

the column K and then multiply the result by the number of ways such an isotropic

system can be extended to an isotropic basis of the form we are interested in (the

latter was already computed in the course of proof of Lemma 2.5, see (2.8)).

We already have noted above that any isotropic system modulo p2 is also an

isotropic system modulo p . Therefore we start with computation of the number of

isotropic systems of d vectors in (Z/pZ)m containing K mod p . We use induction:

assume that X1, . . . , Xn−1 ∈ (Z/pZ)m form an isotropic system. In how many ways

it can be complemented to an isotropic system of n vectors? Since X1, . . . , Xn−1

form a basis of the isotropic subspace Vp(X1, . . . , Xn) of nondegenerate quadratic
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space Vp(1m) then there exist vectors X ′1, . . . X
′
n−1 ∈ Vp(1m) such that each pair

Xi, X
′
i , 1 ≤ i ≤ i− 1, is hyperbolic, i.e. vectors Xi, X

′
i are isotropic, linear indepen-

dent and tXiQX
′
i ≡ 1 (mod p) , see [3, proposition A.2.12] or [9, Satz 2.24]. Then

the spaces Vp(Xi, X
′
i) , 1 ≤ i ≤ n− 1 are (nondegenerate) hyperbolic planes and

Vp(1m) = Vp(X1, X
′
1)⊕ Vp(Xn−1, X

′
n−1)⊕ V

is a direct sum of pairwise orthogonal subspaces. Therefore a vector Y ∈ Vp(1m) can

be isotropic and orthogonal to each of Xi’s only if

Y ≡
n−1∑
i=1

αiXi + v (mod p) ,

where v is an isotropic vector of V . The vectors X1, . . . , Xn−1, Y will be linearly

independent only if v 6≡ 0 (mod p) . Since V is nondegenerate and dimV = m −
2(n − 1) then the number of nonzero isotropic vectors in it equals to pm−2n+1 − 1

(see [3, Proposition A.2.14]). Thus the vector Xn complementing {X1, . . . , Xn−1} to

an isotropic system of n vectors can be chosen in pn−1(pm−2n+1 − 1) ways. Using

induction on n we conclude that a fixed isotropic vector K 6≡ 0 (mod p) can be

complemented to

pd(d−1)/2 ·
d−1∏
s=1

(p2(k−s)−1)

different (ordered) isotropic systems {K,X2, . . . , Xd} ⊂ Vp(1m) . Clearly, the total

number of isotropic systems of d vectors in Vp(1m) containing K is d times that.

Next we need to lift our solution to Vp2(1m) keeping in mind that K is fixed modulo

p2 . Since any vector X ∈ (Z/pZ)m splits in (Z/p2
Z)m into pm different vectors

X + pY , Y ∈ (Z/pZ)m, we need to look for isotropic systems of the form

{X1 + pY1, . . . , K = Xi, . . . , Xd + pYd} ⊂ (Z/p2
Z)m .
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Such a system will be isotropic modulo p2 if and only if

tKQYj ≡ −
1

p
tXjQK (mod p) ;

tXsQYj + tXjQYs ≡ −
1

p
tXsQXj (mod p) for s, j 6= i .

This is a system of (d − 1)(d + 2)/2 linear nonhomogeneous equations in m(d − 1)

variables (elements of columns Uj , j 6= i) over Fp . Since the columns X1, . . . , Xi =

K, . . . , Xd are linearly independent modulo p , so are the columns QX1, . . . , QXd , and

therefore the rank of the matrix of the above system as well as the rank of its extended

matrix is equal to (d − 1)(d + 2)/2 , which implies that it has p(d−1)(m−(d+2)/2)

solutions. We conclude that Vp2(1m) contains

dp(m−1)(d−1) ·
d−1∏
s=1

(p2(k−s))

different isotropic systems of d vectors one of which is K . According to (2.8), each

of these systems can be complemented to a basis of the form (2.6) of some isotropic

module Vp2(UDp), U ∈ Λm in pdb|GLb(Fp)| different ways. Multiplying the last two

numbers we get the total number of bases of the form (2.6) which contain K among

their first d vectors. Dividing the latter by (2.12) we finally deduce the result of the

Lemma.

It remains to consider the isotropic sum Sp2(q, Dp, K) in the case when K ≡
0 (mod p) but K 6≡ 0 (mod p2) . Let K ∈ Vp2(UDp) for some U = (U1, . . . , Um) ∈ Λm

and assume (2.11). Then t(γ1, . . . , γd) ≡ 0 (mod p) and we are faced with two

possibilities:

(i) (γd+1, . . . , γd+b) 6≡ 0 (mod p) ;

(ii) (γd+1, . . . , γd+b) ≡ 0 (mod p) , (γ1, . . . , γd) 6≡ 0 (mod p2) .

In the first case the column t(γ1, . . . , γd+b) can be complemented to a matrix from

Γ , see (2.9), and in the second case this is impossible. Note that the type of repre-

sentation (2.11) of the vector K does not depend on the choice of basis of Vp2(UDp) .
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Therefore, if K ≡ 0 (mod p) but K 6≡ 0 (mod p2) then there exists two distinct

types of isotropic modules which contain K : in modules of the first type there exist

a basis of the form {V1, . . . , Vd, pVd+1, . . . , K, . . . , pVd+b} , but in the modules of the

second type there are no such bases. In the two following Lemmas we compute the

number of isotropic modules of each these two types.

Lemma 2.7. Under the above notations, assume that K ≡ 0 (mod p) but K 6≡
0 (mod p2) . Then the number of isotropic modules of the form Vp2(UDp), U ∈ Λm,

for which (2.11) implies case (i) above, is equal to


ηp
pd
· (pk − χqεp)(p

k−d + χqεp)
d−1∏
s=1

(p2(k−s) − 1) , if q(p−1K) 6≡ 0 (mod p) ,

ηp ·
d∏
s=1

(p2(k−s) − 1) , if q(p−1K) ≡ 0 (mod p) .

Here ηp = p(d2+b−1)(pb − 1)|GLb−1(Fp)||GLd(Fp)|−1|GLb(Fp)|−1 , the quadratic

character χq = χq(p) of the form q is defined via (3.4) below, and εp = εp
(
q(p−1K)

)
is given by the Legendre symbol

εp(a) =

(
2a

p

)
, a ∈ N . (2.13)

Proof. As we already noted above, if an isotropic module satisfies conditions of

the Lemma, then it has a basis of the form {V1, . . . , Vd, pVd+1, . . . , K, . . . , pVd+b} .

Thus we need to compute the total number of bases of the form (2.6) which have K

among the last b vectors, and then divide it by the number of such bases generating

the same isotropic module. The latter is equal to the number of matrices in Γ (2.9)

one of whose last b columns is fixed modulo (Z/p2
Z)d× (Z/pZ)b divided by the oder

of stabilizer |Γ′| :

b(pb − 1)−1|GLd(Fp)| · |GLB(Fp)|pd
2+2db−d . (2.14)

Now we need to compute the total number of bases of the form (2.6) which have K
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among their last b vectors. Assume first that q(p−1K) 6≡ 0 (mod p) , i.e. the column

p−1K is anisotropic. Then Vp(1m) = Vp(p
−1K) ⊕ V , where V is an orthogonal

complement of Vp(p
−1K) (see [9, Satz 1.15]). The module V is nondegenerate and

its dimension dimV = m − 1 is even. Any vector orthogonal to p−1K belongs to

V and in particular is linear independent (modulo p) with p−1K . Therefore first

d columns of a basis of the type in question should form an isotropic system in V .

According to [3, Proposition A.2.14], the number of such systems is equal to

pd(d−1)/2(pk − χq(p)εp)(p
k−d + χq(p)εp)

d−1∏
s=1

(p2(k−s) − 1) , (2.15)

where εp = εp
(
q(p−1K)

)
is the Legendre symbol (2.13). Each of these systems splits

into pdm−d(d+1)/2 different isotropic systems in Vp2(1m) , see (2.7), any of which can

be chosen as first d columns of a basis of the form (2.6). Now we need to find in how

many ways an isotropic system U1, . . . , Ud, K can be complemented by b− 1 vectors

from (Fp)
m to form a basis of the type (2.6). Orthogonality conditions imply that

elements of each of the complementary columns should satisfy the following system

of linear homogeneous equations:


tU1Q

...

tUdQ

 ·

y1
...

ym

 ≡ 0 (mod p)

This system of d equations in m variables over Fp has d+b linear independent modulo

p solutions which can be chosen in the form ϑ = (U1, . . . , Ud, p
−1K,V2, . . . , Vb) . Any

other set of linear independent solutions has the form ϑ ·M with M ∈ GLd+b(Fp) .

Among such matrices M there are exactly b|GLb−1(Fp)|p(b−1)(d−1) matrices which do

not change the first d columns of the basis and leave p−1K intact (possibly changing

its position). And this is exactly the number of different (modulo p) sets of vectors

pUd+1, . . . , K, . . . , pUd+b which complement a given isotropic system U1, . . . , Ud to

a basis of the form (2.6). Therefore, multiplying this number by (2.15) times (2.7)

and dividing by (2.14), we deduce the statement of the Lemma in the case when
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q(p−1K) 6≡ 0 (mod p) .

We turn to the case of an isotropic vector p−1K ∈ Zm . Assume that q(p−1K) ≡
0 (mod p) and let V ⊂ Vp(1m) again denote its orthogonal complement. We see that

dimV = m − 1 again but now V is degenerate: it has nontrivial radical radV =

Vp(p
−1K) . Nevertheless, V = radV ⊕ W , where W is a nondegenerate subspace

orthogonal to radV . The first d vectors of a basis of the type we are interested in

should form an isotropic system in V . Suppose that U1, . . . , Ud is a set of elements

of V . Each of these vectors can be uniquely represented in the form

Ui ≡ αip
−1K + wi (mod p) , where αi ∈ Fp , wi ∈ W .

Naturally, each of Ui’s is orthogonal to p−1K . They will be isotropic an pairwise

orthogonal if and only if twiQwj ≡ 0 (mod p) for 1 ≤ i ≤ j ≤ d . Furthermore,

the columns U1, . . . , Ud, p
−1K will be linearly independent (modulo p) if and only if

w1, . . . , wd ∈ W are linearly independent. We conclude that U1, . . . , Ud will be an

isotropic system if and only if w1, . . . , wd form an isotropic system. The number of

isotropic systems of d vectors in W is equal to

pd(d−1)/2 ·
d∏
s=1

(p2(k−s) − 1)

(see [3, Proposition A.2.14]). Multiplying this number by pd we get the number of

different isotropic systems in V consisting of d vectors linear independent with p−1K .

The rest of the computations completely coincide with the case of anisotropic p−1K

and lead to the result stated in the Lemma.

Let us turn to the second case.

Lemma 2.8. Under the above notations, assume that K ≡ 0 (mod p) but K 6≡
0 (mod p2) . Then the number of isotropic modules of the form Vp2(UDp), U ∈ Λm
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for which (2.11) implies case (ii) above is equal to

 0 , if q(p−1K) 6≡ 0 (mod p) ,

p(d−1)2|GLd−1(Fp)|−1 ·∏d−1
s=1(p2(k−s) − 1) , if q(p−1K) ≡ 0 (mod p) .

Proof. Let {U1, . . . , pUd+b} be a basis of the form (2.6). Assume that (2.11) holds

for some column t(γ1, . . . , γd+b) . Then the conditions (γ1, . . . , γd+b) ≡ 0 (mod p) and

(γ1, . . . , γd) 6≡ 0 (mod p2) will hold if and only if p−1K ∈ Vp(U1, . . . , Ud) . But the

subspace Vp(U1, . . . , Ud) ⊂ Vp(1m) is isotropic, therefore the column t(γ1, . . . , γd+b)

satisfies (ii) if and only q(p−1K) ≡ 0 (mod p) , otherwise there exist no isotropic

modules which would satisfy the conditions of the Lemma. This proves its first case.

Suppose now that q(p−1K) ≡ 0 (mod p) . In order to find the number of isotropic

modules we are interested in, we need to divide the number of different bases of the

form (2.6) for which p−1K ∈ Vp(U1, . . . , Ud) by the number of different bases of the

form (2.6) which generate the same isotropic module, i.e. by |Γ/Γ′| computed above,

see discussion immediately following (2.9). Next, the number of bases of the form

(2.6) with the property in question is equal to the product of the number of different

isotropic systems {U1, . . . , Ud} ∈ Vp2(1m) for which p−1K ∈ Vp(U1, . . . , Ud) multi-

plied by the number of ways an isotropic system of d vectors can be complemented to

a basis of the form (2.6), i.e. by pdb·|GLb(Fp)| , see (2.8). According to (2.7), the num-

ber of isotropic systems {U1, . . . , Ud} ∈ Vp2(1m) for which p−1K ∈ Vp(U1, . . . , Ud)

is equal in turn to the number of isotropic systems {U1, . . . , Ud} ∈ Vp(1m) for which

p−1K ∈ Vp(U1, . . . , Ud) times pdm−d(d+1)/2 . Thus it remains to find the number of

isotropic systems {U1, . . . , Ud} ∈ Vp(1m) for which p−1K ∈ Vp(U1, . . . , Ud) . Since

K 6≡ 0 (mod p2) then p−1K is a nonzero isotropic vector of Vp(1m) , and so if

p−1K ∈ Vp(U1, . . . , Ud) then p−1K can be complemented to a basis of Vp(U1, . . . , Ud) .

Therefore the number of different isotropic systems in Vp(1m) with the property in

question is equal to the number of isotropic systems of d vectors in Vp(1m) contain-

ing the vector p−1K (which was computed in the proof of Lemma 2.6) divided by

dpd−1 · |GLd−1(Fp)| , i.e. by the number of such isotropic systems generating the
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same module, and multiplied by |GLd(Fp)| , i.e. by the number of different bases of

a d-dimensional linear space over Fp . This finishes the proof of the Lemma.

Combining the results of Lemmas 2.4 and 2.6–2.8 along with formulas (2.3) and

(2.10), we deduce the following Theorem:

Theorem 2.9. Let q be an arbitrary integral nonsingular quadratic form in an

odd number of variables m = 2k + 1 ≥ 3 , and let p be a rational prime not dividing

the determinant det q of the form q . Then for each integral column K ∈ Zm such

that q[K] ≡ 0 (mod p2) the value of the isotropic sum (2.3) is given by

Sp2(q, Dp(d), K) =

αp(d) ·
{

1 +
(
εpχq(p)pk−1 + κp(d)

)
· δ(p−1K) + pm−2 · δ(p−2K)

}
, (2.16)

where Dp(d) , 1 ≤ d ≤ k is a matrix of the form (2.2), εp = εp
(
q(p−1K)

)
is given by

the Legendre symbol (2.13), the character χq(p) of the form q is defined via (3.4),

δ(X) is the generalized Kronecker symbol (3.7) and

αp(d) = p1−d ·
d−1∏
s=1

(p2(k−s) − 1)/(1− p−s) ,

κp(d) =
pm−2 − pd−1

pd − 1
− 1 .

Proof. It is well-known that for n ≥ 1

|GLn(Fp)| =
n−1∏
s=0

(pn − ps) = pn
2
·
n∏
s=1

(1− p−s) .

We also put |GL0(Fp)| = 1 and note that |GLn−1(Fp)|−1 ·|GLn(Fp)| = pn−1 ·(pn−1) .

Assume that K 6≡ 0 (mod p) , then according to Lemma 2.6

Sp2(q, Dp(d), K) =
p(d−1)2−d2

(pd − 1)

1− p−d
·
d−1∏
s=1

p2(k−s) − 1

1− p−s
= αp(d) ,
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which coincides with the right-hand side of (2.16) for such K since δ(p−1K) and

δ(p−2K) are both equal to 0 in this case. Next, assume that K ≡ 0 (mod p) but

K 6≡ 0 (mod p2) . Combining results of Lemmas 2.7, 2.8 and employing a rather

straightforward calculation one can see that Sp2(q, Dp(d), K) is equal to

(pd − 1)−1(pk − εpχq(p))(pk−d + εpχq(p)) ·
d−1∏
s=1

(p2(k−s) − 1)/(1− p−s) ,

if q(p−1K) 6≡ 0 (mod p) and

(pd − 1)−1(pa+b−1 − 1) ·
d−1∏
s=1

(p2(k−s) − 1)/(1− p−s) ,

if q(p−1K) ≡ 0 (mod p) . Note that in the latter case the symbol εp = εp
(
q(p−1K)

)
in (2.13) is equal to zero and that otherwise εp = ±1 . Therefore

Sp2(q, Dp(d), K) =

(pd − 1)−1 ·
(
pd+b−1 − 1 + εpχq(p)pk(1− p−d)

)
·
d−1∏
s=1

(p2(k−s) − 1)/(1− p−s) =

αp(d) ·
{

1 + εpχq(p)pk−1 + κp(d)
}

which coincides with the right-hand side of (2.16) in the case when K ≡ 0 (mod p) ,

K 6≡ 0 (mod p2) . Finally, if K ≡ 0 (mod p2) then εp = 0 and, using (2.10) we have

Sp2(q, Dp(d), K) = αp(d) · pd−1 · (p2k − 1)/(pd − 1) ,

which coincides with the right-hand side of (2.16) for such K .

Summing up the equalities (2.16) over d ranging from 1 to k = (m − 1)/2 we

immediately deuce the following
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Corollary 2.10. Under the notations and assumptions of Theorem 2.8,

k∑
d=1
Sp2(q, Dp(d), K) =

cp ·
{

1 +
(
εpχq(p)pk−1 + c−1

p βp
)
· δ(p−1K) + pm−2 · δ(p−2K)

}
,

where cp = cp(q) and βp = βp(q) are given by (3.3).

We have finished computation of the isotropic sums of type (2.3). In order to

apply the results of Theorem 2.9 and Corollary 2.10 to investigation of multiplicative

arithmetic of integral representations by quadratic form q , we need to rewrite the

isotropic sums in a slightly different terms. Recall that the Minkowski reduction

theory of quadratic forms (see [3] for example) shows that the similarity class of a

nonsingular integral quadratic form in m variables is a finite union of mutually disjoint

classes of integrally equivalent quadratic forms. Let us fix a complete system

{q1, . . . ,qh}

of representatives of different equivalence classes contained in the similarity class

of q . Then the isotropic sum (2.3) can be rewritten as follows. The condition

q[M ] ≡ 0 (mod p2) means that q[M ] = p2q′ , where q′ is an integral quadratic form

in m variables. Since detM = detDp = pm then det q′ = det q and thus quadratic

form q′ is similar to q . Since M is defined only modulo right multiplication by

Λm , we can replace q′ by any (integrally) equivalent form q′[U ] , U ∈ Λm . In

particular we can assume that q[M ] = p2qi for exactly one of qi’s, 1 ≤ i ≤ h

and M ∈
(
R(q, p2qi) ∩ ΛmDp(d)Λm

)
/Λm for some d . Furthermore, if M,MU ∈

R(q, p2qi) ∩ ΛmDp(d)Λm where U ∈ Λm then U ∈ R(qi,qi) = E(qi) and so M ∈
R(q, p2qi)/E(qi) ∩ ΛmDp(d)Λm . Therefore

Sp2(q, Dp(d), K) =
h∑
i=1

∑
M∈

(
R(q,p2qi)∩ΛmDp(d)Λm

)
/E(qi)

M |K

1 . (2.17)
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Next we note that according to the Lemma 2.2 the set of primitive automorphs

R∗(q, p2qi) is a disjoint union

R∗(q, p2qi) =
⋃

1≤d≤(m−1)/2

(
R(q, p2qi) ∩ λmDp(d)Λm

)
.

Therefore summing both sides of (2.17) over d ranging from 1 to (m − 1)/2 and

applying Corollary 2.10 we deduce the following Theorem:

Theorem 2.11. Let q be an arbitrary integral nonsingular quadratic form in

an odd number of variables m = 2k + 1 ≥ 3 , and let p be a rational prime not

dividing the determinant det q of the form q . Let {q1, . . . ,qh} be a complete system

of representatives of different equivalence classes contained in the similarity class of

q . Then for each integral column K ∈ Zm such that q[K] ≡ 0 (mod p2) we have

h∑
i=1

∑
M∈R∗(q,p2qi)/E(qi)

M |K

1 =

cp ·
{

1 +
(
εpχq(p)pk−1 + c−1

p βp
)
· δ(p−1K) + pm−2 · δ(p−2K)

}
, (2.18)

where the symbol εp = εp
(
q(p−1K)

)
is defined in (2.13), χq(p) is the character (3.4),

δ(X) is the generalized Kronecker symbol (3.7) and cp = cp(q), βp = βp(q) are given

by (3.3).
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Action of Hecke operators on theta-series

If q is positive definite, the numbers r(q, n) are finite, and we can consider the theta-

series

Θ(z,q) =
∑

X∈Zm
e2πizq(X) =

∑
n≥0

r(q, n)e2πinz , z ∈ H ,

and show that it is a (classical) modular form of weight m/2 and some character with

respect to a certain congruence subgroup (see, for example [3, Theorem 2.2.2]). In

general, theta-series are not eigenfunctions of Hecke operators, but the spaces spanned

by theta-series that come from a fixed similitude class of quadratic forms are invariant

under the action of Hecke operators. The fundamental discovery of M. Eichler [6] is

that in this situation the corresponding eigenmatrices (“Anzahlmatrizen” in Eichler’s

terminology) are purely arithmetical and can be defined without any reference to

modular forms. (The same phenomenon occurs in the case of Siegel modular forms

of arbitrary degree, as was shown by E. Freitag [7] and A. Andrianov [3].)

More specifically, let {q1, . . . ,qh} be a full system of representatives of different

equivalence classes of the similarity class of q and let p be a prime number not dividing

det q, then

Θ(z,q) |m
2
T (p) = c−1

p ·
∑

1≤j≤h

r∗(q, pqj)
e(qj)

Θ(z,qj) , (3.1)

if m (the number of variables of q) is even and

Θ(z,q) |m
2
T (p2) = c−1

p ·
( ∑

1≤j≤h

r∗(q, p2qj)

e(qj)
Θ(z,qj)− βpΘ(z,q)

)
, (3.2)

if m is odd.

32
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Here we set

cp = cp(q) =



1 if m = 2 ,
k−2∏
i=0

(1 + χq(p)pi) if m = 2k > 2 ,

k∑
a=1

a−1∏
i=1

p2(k−i)−1
1−p−i · p

1−a if m = 2k + 1 ≥ 3 ,

(3.3)

βp = βp(q) =
k∑
a=1

(a−1∏
i=1

p2(k−i) − 1

1− p−i
· p

m−2 − pa−1(p+ 1) + 1

pa−1(pa − 1)

)
,

and the quadratic character χq(p) is given by the Legendre symbol

χq(p) =
((−1)k det q

p

)
. (3.4)

A detailed proof of formula (3.1) for the action of Hecke operators T (p) on theta-

series of integral weight can be found in [3, Chapter 5] and specifically in Theorem

5.2.5 there. The second formula (3.2) for the action of Hecke operators T (p2) on

theta-series of half-integral weight easily follows from combination of [12, Theorem

1.7] and Theorem 2.11 above:

Proof of Formula (3.2). Assume that q is a positive definite (integral) quadratic

form in an odd number of variables m = 2k + 1 ≥ 3 . Then using [12, Theorem 1.7]

we have

Θ(z,q) |m
2
T (p2) =

∑
n≥0

{
r(q, p2n) + χq(p)

(
2n

p

)
pk−1r(q, n) + pm−2r(q,

n

p2 )

}
e2πinz ,

where we understand that r(q, n/p2) = 0 if p2 6 | n . On the other hand, summing up

both sides of (2.18) over K ∈ R∗(q, p2n) for some n ∈ N∪ {0}, we conclude that the

sum
h∑
i=1

∑
K∈R(q,p2n)

∑
M∈R∗(q,p2qi)/E(qi)

M |K

1 =
h∑
i=1

∑
M∈R∗(q,p2qi)
L∈R(qi,n)

1

e(qi)
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on the left-hand side of the resulting identity is equal to

h∑
i=1

r∗(q, p2qi)

e(qi)
· r(qi, n)

and also coincides with the expression on the right-hand side:

∑
K∈R(q,p2n)

cp ·
{

1 +
(
εp(n)χq(p)pk−1 + c−1

p βp
)
· δ(p−1K) + pm−2 · δ(p−2K)

}
=

cp ·
{
r(q, p2n) +

(
εp(n)χq(p)pk−1 + c−1

p βp
)
r(q, n) + pm−2r(q, n/p2)

}
.

Thus

c−1
p ·

 h∑
i=1

r∗(q, p2qi)

e(qi)
r(qi, n)− βpr(q, n)


coincides with the nth Fourier coefficient of Θ(z,q)|m

2
T (p2) , and on the other hand

it is equal to the nth Fourier coefficient of the series on the right-hand side of (3.2).

This finishes the proof of (3.2) because of the uniqueness of Fourier decomposition.

It can easily be seen that in the case of an odd number of variables the formulas

are not as nice as when m is even. (Unfortunately, this feature is typical.) Since we

can substitute for q any of qi , 1 ≤ i ≤ h, the above formulas lead to the so-called

Eichler commutation relation:


...

Θ(z,qi)
e(qi)

...

 ∣∣∣m
2
T (pι) = c−1

p ·
(
t∗(pι)− βpδ(m+1

2 )1h
)
·


...

Θ(z,qj)
e(qj)

...

 , (3.5)

where

ι =

{
1 if m = 2k is even,

2 if m = 2k + 1 is odd,

the square matrix

t∗(pι) = t∗q(pι) =
(r∗(qi, pιqj)

e(qi)

)
(3.6)

of oder h is the Eichler’s “Anzahlmatrix” (with multiplier pι), and δ is the generalized
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Kronecker symbol defined by

δ(X) =

{
1 if X is an integral matrix,

0 if X is not an integral matrix.
(3.7)

Finally, following C. L. Siegel, we can consider the generic theta-series

Θ{q}(z) =
h∑
j=1

e−1(qj)Θ(z,qj)

and show that for p 6 | det q it is an eigenfunction of the corresponding Hecke operators

T (pι) with eigenvalues c−1
p (

∑
j
r∗(q,pιqj)
e(qj)

− (ι − 1)βp) , ι is either 1 or 2 depending

on the parity of m. In case m is even and det q = 1 the generic theta-series is

proportional to the Eisenstein series of weight m
2 . (This implies the famous Siegel

theorem on mean numbers of integral representations in the case of quadratic forms

of determinant 1 , see, for example [3, Exercise 5.1.18].)

The above formulas together with remarkable multiplicative properties of corre-

sponding Hecke algebras (see [3]) reveal multiplicative relations between the Fourier

coefficients of the theta-series, which are best expresses in terms of associated zeta-

functions:

∑
(n,det q)=1

r̄(na)

ns
=

∏
p 6 |det q

( 1

1− c−1
p t̄∗(p)p−s + χq(p)pk−1−2s

)
· r̄(a) (3.8)

if m = 2k is even and a is any nonzero integer, or

∑
(n,det q)=1

r̄(n2a)

ns
=

∏
p 6 |det q

( 1− χq(p)(2a
p )pk−1−s

1− c−1
p (̄t∗(p2)− βp)p−s + pm−2−2s

)
· r̄(a) (3.9)

if m = 2k + 1 ≥ 3 is odd and a is a square-free integer.

For r̄(n) we can substitute either the column-vector t(. . . ,
r(qj ,n)
e(qj)

, . . .) or the mean

number
∑h
j=1

r(qj ,n)
e(qj)

. The first case corresponds to the Fourier coefficients of the

vector-valued modular form t(. . . ,
Θ(z,qj)
e(qj)

, . . .) , and the second to the Fourier coef-

ficients of the generic theta-series Θ{q}(z). Then t̄∗(pι) stands either for Eichler’s
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matrix (3.6) or for the average
∑h
j=1

r∗(qj ,pιq)
e(qj)

. In any case the formulas (3.8) and

(3.9) give us explicit expressions of multiplicative relations among the numbers r(q, n)

of integral representations of integers by quadratic forms. The well-known formula

(3.8) easily follows from (3.5) and [3, Exercise 4.3.6], for example. A proof of the

formula (3.9) follows below.

Proof of Formula (3.9). Let r̄(n) = t(. . . ,
r(qj ,n)
e(qj)

, . . .) and let t̄∗(p2) be Eichler’s

matrix (3.6). Substituting quadratic form qj , 1 ≤ j ≤ h (from the full system of

representatives {q1, . . . ,qh}) in place of q in (2.18), dividing both sides by e(qj) and

summing up over K ∈ R∗(qj , p2n) in the same way we did for the proof of (3.2), we

conclude that

c−1
p ·

h∑
i=1

r∗(qj , p2qi)

e(qj)
· r(qi, n)

e(qi)
=

{
r(qj , p

2n) +
(
εp(n)χq(p)pk−1 + c−1

p βp
)
r(qj , n) + pm−2r(qj , n/p

2)
}
,

for any j, 1 ≤ j ≤ h and any n ∈ N ∪ 0 . In matrix notations:

c−1
p · t̄∗(p2) · r̄(n) = r̄(p2n) +

(
εp(n)χq(p)pk−1 + c−1

p βp
)
· r(n) + pm−2 · r(n/p2) .

The last equality implies the following identities for the following formal power series

in t with coefficients in Qh :

(
1h − c−1

p (̄t∗(p2)− βp)t+ pm−2t2
)
·
∑
δ≥0

r̄(p2δa)tδ =

r̄(a) +
(
r̄(p2a)− c−1

p (̄t∗(p2)− βp)r̄(a)
)

+∑
δ≥2

{
r̄(p2δa)− c−1

p (̄t∗(p2)− βp)r̄(p2(δ−1)a) + pm−2r̄(p2(δ−2)a)
}
tδ =

(
1h − εp(a)χq(p)pk−1t

)
· r̄(a) ,

where a is an arbitrary integer not divisible by p2 . Define formal power series in t
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with coefficients in Zhh by

∑
δ≥0

t̂∗a(p2δ)tδ =
1h − εp(a)χq(p)pk−1t

1h − c−1
p (̄t∗(p2)− βp)t+ pm−2t2

,

in other words


t̂∗a(1) = 1h ,

t̂∗a(p2) =
(
c−1
p (̄t∗(p2)βp)− εp(a)χq(p)pk−1

)
· 1h ,

t̂∗a(p2δ) = c−1
p (̄t∗(p2)− βp)̂t∗a(()p2(δ−1))− pm−2t̂∗a(p2(δ−2)) , for δ ≥ 2 .

Then formally ∑
δ≥0

r̄(p2δa)tδ =
∑
δ≥0

t̂∗a(p2δ)tδ · r̄(a)

and so r̄(p2δa) = t̂∗a(p2δ) · r̄(a) for δ ≥ 0 and a not divisible by p2 . Define

t̂∗a(n2) =
l∏

s=1
t̂∗a(p2δs

s ) , if n = p
δ1
1 · . . . · p

δl
l ,

here pj ’s are distinct prime factors of n and δj ’s are the corresponding orders. The

definition does not depend on the oder of the factors. (To see this it is enough to

note that according to [4, Lemmas 3.3–3.6], Eichler matrices t̄∗(p2) , t̄∗(u2) commute

for different primes p, u not dividing det q .) We also claim that r̄(n2a) = t̂∗a(n2) · r̄(a)

for any integer n coprime to det q , and any integer a not divisible by the square of

any prime factor of n . Indeed, let n = p
δ1
1 · . . . · p

δl
l be coprime to det q . We will use

induction on l to justify our claim. If l = 1 then the statement is obvious because of

the definition of t̂∗a(n2) = t̂∗a(p
2δ1
1 ) . Assume now that if b is a product of powers of

p1, . . . , pl−1 then r̄(b2a)̂t∗a(b2) · r̄(a) for any a not divisible by p2
i , i ranging from 1 to

l − 1 . Fix an integer a not divisible by any of p2
i , 1 ≤ i ≤ l , then

r̄(n2a) = r̄(
∏l−1
i=1 p

2δi
i · p

2δl
l a) = t̂∗

(p
2δl
l a)

(
∏l−1
i=1 p

2δi
i ) · r̄(p2δl

l a) =

t̂∗a(
∏l−1
i=1 p

2δi
i ) · t̂∗a(p

2δl
l ) · r̄(a) = t̂∗a(n2) · r̄(a) ,
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since t̂∗(u2a)(p
2) = t̂∗a(p2) if u and p are coprime. By induction on l we conclude

that r̄(n2a)̂t∗a(n2) · r̄(a) for any integer n coprime to det q and any integer a not

divisible by the square of a prime factor of n (in particular for any square-free integer

a ). Combining the above equalities we deduce the following identities for the formal

zeta-functions:

∑
(n,det q)=1

r̄(n2a)

ns
=

∑
(n,det q)=1

t̂∗a(n2)

ns
· r̄(a) =

∏
p 6 |det q

(∑
δ≥0

t̂∗a(p2δ)

psδ

)
· r̄(a) =

∏
p 6 |det q

( 1− χq(p)(2a
p )pk−1−s

1− c−1
p (̄t∗(p2)− βp)p−s + pm−2−2s

)
· r̄(a)

for any square-free integer a which finishes the proof of (3.9) for the case of column-

vectors r̄(n) = t(. . . ,
r(qj ,n)
e(qj)

, . . .) . Proof of (3.9) for the case of the mean numbers∑
j r(qj , n)/e(qj) proceeds in a similar fashion. One just needs to multiply both sides

of the matrix equalities above by the row (1, . . . , 1) of length h and observe that

(1, . . . , 1) ·
(
r∗(qi, pιqj)

e(qi)

)
=
(
cp(1 + pm−2) + βp

)
· (1, . . . , 1)

according to comparison of the 0th Fourier coefficients in (3.2).

We also note that the zeta-functions on the right hand side of (3.8) are closely

related to Epstein’s zeta-functions

ζ(s,qj) =
∑
n≥1

r(qj , n)

ns
, (3.10)

which are Mellin transforms of the corresponding theta-series Θ(z,qj) and, therefore,

have good analytic properties (they admit meromorphic continuation on the entire s-

plane and obey standard functional equation, for more details see [8], [12] or exercises

in [3, Section 4.3.1]).



Chapter 4

Matrix Hecke rings of orthogonal groups

For a long time it was somewhat of a mystery that the numbers r(q, n) of integral

solutions of certain quadratic equations have general multiplicative properties even

though no similar relations between the solutions themselves were known. (The sole

exception to this rule was the case of the so-called composition of quadratic forms.

Then the integral representations can be interpreted as elements of certain arith-

metical rings and the multiplicative structure of these rings is reflected in relations

among these representations. A classical example of this phenomenon is the Gauss

theory of binary quadratic forms. Unfortunately, by a theorem of Hurwitz, there is

no composition unless the number of variables is equal to 1, 2, 4 or 8.)

In [1] A. Andrianov developed Shimura’s construction of abstract matrix Hecke

algebras (see [11]) specifically for the case of orthogonal groups, and introduced au-

tomorph class rings. The latter play the role of Hecke operators acting directly on

the sets of solutions of quadratic Diophantine equations. The basic idea behind this

action is that

R(q, aq′) ·R(q′, bq′′) ⊂ R(q, abq′′)

for any integral quadratic forms q ,q′,q′′ and for any integers a, b (the dot refers to

usual matrix multiplication). This purely algebraic approach revealed existence of

general multiplicative relations between automorphs R(q, nq′) and representations

R(q, n) of integers by quadratic forms. Remarkably, these relations can be expressed

in terms of associated zeta-functions in the form almost identical to (3.8) and (3.9).

In fact, the latter formulas for numbers of representations turn out to be immediate

consequences of the former relations between representations themselves! This sug-

gests the existence of some correlation between rings of Hecke operators for symplectic

and for orthogonal groups.

39
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Let us examine the construction in some detail. For an integral nonsingular

quadratic form q in m variables, we fix a complete system {q1, . . . ,qh} of represen-

tatives of equivalence classes that are included in the similarity class of q. Consider

free Z-modules Aij , 1 ≤ i, j ≤ h, generated by the double cosets

{E(qi)AE(qj) , where A ∈ E(qi)\
⋃
a∈N

R(qi, aqj)/E(qj)} .

Since any double coset of the above type is a finite disjoint union of left cosets mod-

ulo E(qi), we shall write elements of Aij as finite linear combinations with inte-

gral coefficients of (formal) symbols <A> that bijectively correspond to left cosets

E(qi)A , A ∈ E(qi)\
⋃
a∈NR(qi, aqj). Note that elements of Aij are invariant un-

der the right multiplication by matrices belonging to E(qj). Together with obvious

inclusion

R(qi, aqj) ·R(qj , bqk) ⊂ R(qi, abqk)

this allows us to define natural multiplication

Aij × Ajk −→ Aik ,∑
α
aα <Aα> ·

∑
β

bβ <Bβ>=
∑
α,β

aαbβ <AαBβ> .

Finally, we introduce the ring of (h× h) matrices

A = A{q} = {(Aij) ; Aij ∈ Aij , 1 ≤ i, j ≤ h} ,

which is the automorph class ring (over Z) of the form q. Sometimes it is more

convenient to consider A⊗Q, the automorph class ring over Q.

The automorph counterparts of the classical Hecke operators T (pι) (ι is 1 or 2

depending on the parity of m) are elements of the form

T∗(pι) = T∗q(pι) =
(
T∗ij(p

ι)
)

, where T∗ij(p
ι) =

∑
D∈E(qi)\R∗(qi,pιqj)

<D> . (4.1)
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Note that these matrices are close relatives of Eichler’s “Anzahlmatrizen” (3.6).

Next we should define an action of A on the integral representations by the forms

q1, . . . ,qh . The idea is based on the natural inclusion: R(qi, nqj) · R(qj , a) ⊂
R(qi, na) . In order to suite our formalism we introduce column-vectors of length h :

R(a) = Rq(a) =


...

Rj(a)
...

 , where Rj(a) =
∑

L∈E(qj)\R(qj ,a)
µ−1

qj (L)· <L> , (4.2)

which encode all orbits modulo E(qj) of integral representations of a by the forms

qj . Here µqj (L) is a suitably normalized measure of the stabilizer EL(qj) = {U ∈
E(qj) ; UL = L} . The vectors of type (4.2) can be thought of as elements of

Q-module D = Dq = D1 × . . . × Dh whose jth component Dj is a free Q-module

generated by (formal) symbols < L > that are in one-to-one correspondence with

orbits E(qj)L in E(qj)\Zm .

In this notation an automorph analog of Eichler’s commutation relation (3.5) take

the form:

R(pa) + χq(p)pk−1[p]R(a/p) = c−1
p T∗(p)R(a) (4.3)

if m = 2k , or

R(p2a) + χq(p)pk−1
(2a

p

)
[p]R(a) + pm−2[p2]R(a/p2) = c−1

p

(
T∗(p2)− βp1h

)
R(a)

(4.4)

if m = 2k+ 1 ≥ 3 . Here p is a prime number coprime to det q, a is a positive integer,

and [pι] = diag(<pι1m>, . . . , < pι1m>) ∈ A are simple elements of the automorph

class ring that are responsible for nonprimitive automorphs. The automorph class

theory formalism was initially developed in [1], where the original proof of the formula

(4.3) can be found (see [1, section 1, formula (1.18)]. The formula (4.4) was proved in

[4, Theorem 3.1] (for the case of positive-definite quadratic forms) and in [5, formula

(2.8)] for the case of arbitrary nonsingular forms.

The above formulas relating sets of representations R(q, pιa) and R(q, a) imme-

diately imply similar relations between the numbers r(q, pιa) and r(q, a) of represen-
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tations. Namely, consider two “ coefficient” homomorphisms π:

A −→Mh(Z) or D −→ Z
h

defined entry-wise by

π :
∑
α
aα <Aα> 7−→

∑
α
aα

for a corresponding finite formal linear combination of “orbits” < ·> . For example,

π
(
T∗q(pι)

)
= t∗q(pι) =

(
|E(qi)\R∗(qi, pιqj)|

)

is Eichler’s “Anzahlmatrix” (3.6) . In case q is positive definite all sets of representa-

tions under consideration are finite, in particular

π
(
Rq(n)

)
= rq(n) =


...

r(qj ,n)
e(qj)

...



is the nth Fourier coefficient of the vector modular form t(. . . ,
Θ(z,qj)
e(qj)

, . . .) . Then ap-

plication of the homomorphisms π to (4.3) and (4.4) leads directly to Eichler’s identi-

ties (3.5) written in terms of the Fourier coefficients of the corresponding theta-series.

Furthermore, the automorph class ring A itself has good multiplicative properties (as

could be expected of an arbitrary Hecke algebra). Combining these properties with

(4.3) or (4.4) we deduce Euler product expansions of (formal) zeta-functions

∑
(n,det q)=1

R(n)

ns
or

∑
(n,det q)=1

R(n2a)

ns

very similar to Euler products (3.8) or (3.9) respectively (for exact formulas and their

detailed proofs see [1, formula (1.19)] and [5, formula (1.13) with Theorem 1.1]).

This method also provides an alternative proof of identities (3.8) , (3.9) themselves

via appropriate application of the “coefficient” homomorphisms π . It should be

emphasized here once again that all of the above considerations are purely algebraic
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and remain valid for any nondegenerate quadratic form over a Dedekind domain. (For

an extensive account of multiplicative properties of general automorph class rings and

of Euler products of associated formal zeta-functions the reader is referred to [1],[5]

and especially to [2].)



Chapter 5

Shimura’s lift for theta-series

In [12] G. Shimura showed that if a cusp form f(z) =
∑
n≥1 c(n) exp(2πinz) of

weight m/2 (where m = 2k + 1 ≥ 3) is a common eigenfunction for all Hecke

operators T (p2), then the zeta-function
∑
n≥1 c(n

2a)/ns has Euler product decom-

position of type (3.9) for every square-free positive integer a (it suffices to replace

r̄(·) by c(·) and c−1
p (̄t∗(p2) − βp) by the corresponding eigenvalues of Hecke opera-

tors). Comparing the denominators of the local factors in (3.8) and (3.9),we can

observe their striking similarity. Indeed, Shimura used the Weil criterion to prove

that the zeta-function

(∑
n≥1

χf (n)(an)nk−1

ns

)
·
(∑
n≥1

c(n2a)

ns

)
(5.1)

defined by the Euler product of denominators of local factors of
∑
n≥1 c(n

2a)/ns is

the Mellin transform of a modular form f (a)(z) of integral weight m−1 = 2k (see [12,

Main theorem]). The form c−1(a) ·f (a)(z) is independent of a and is called Shimura’s

lift of f(z). In what follows we shall use this name for f (a)(z) as well.

P. Ponomarev in [10] investigated the lift for theta-series Θ(z,q) of certain ternary

positive definite quadratic forms. In general, theta-series are neither cusp forms nor

Hecke eigenforms but it is still possible to consider the lift Θ(a)(z,q) defined for an

integer a via product of type (5.1). As the reader already expects, in order to get a

complete picture we should work not with an individual quadratic form q but rather

with a complete system

{q1, . . . ,qh} (5.2)

of representatives of different equivalence classes of the similarity class of q. Employ-

ing particular case where m = 3 of Eichler’s commutation relation (3.5) P. Ponomarev

44
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showed that

Θ(a)(z,qk) =
h∑
j=1

(
r(qj , a) ·

∑
n≥0

πkj(n
2) e2πinz

)
, 1 ≤ k ≤ h ,

where each
∑
n≥0 πkj(n

2) exp(2πinz) is a finite linear combination of theta-series of

quaternary quadratic forms associated with certain lattices in a quaternion algebra

(see [10, Theorem 1]). The quaternion algebra is chosen so that the reduced norm

on its pure part is similar over Q to the form q. In particular then (πkj(p
2)) =

(r∗(qk, p
2qj)/e(qj)) is none other than the transpose of Eichler’s matrix (3.6) .

One of our goals in the present paper is to find an automorph analog of Shimura’s

lift for theta-series of ternary quadratic forms. Let us start with a brief reexamination

of P. Ponomarev’s main result from a somewhat different point of view. For simplicity

assume that q is an integral ternary positive definite quadratic form of class number

h. We fix the system (5.2) of representatives in the similitude class. Then the generic

theta-series Θ{q}(z) is an eigenform of all Hecke operators T (p2) with p 6 | det q and

identity (3.9) is true for the associated zeta-functions. From (3.3) it follows that for

ternary quadratic forms the local constants in (3.9) are given by: c−1
p = 1 , βp = 0 .

Define coefficients bn by

∑
n

bn
ns

=
∏
p

(1− t̄∗(p2)p−s + p1−2s)−1 ,

where

t̄∗(p2) = t̄∗q(p2) =
h∑
j=1

r∗(qj , p2q)

e(qj)
,

and put

B(z) =
∑
n
bne

2πinz .

Observe that, in particular, b1 = 1 , bp = t̄∗(p2) . We expect B(z) to be equal to a

finite linear combination

B(z) =
H∑
j=1

xjΘ(z,nj) =
∑
n

( H∑
j=1

xjr(nj , n)
)
e2πinz
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of theta-series associated with some quaternary (integral) quadratic forms nj . We

also expect B(z) to satisfy

B(z) |2 T (p) = t̄∗q(p2)B(z)

for any prime p , p 6 | det q . A plausible candidate would be

B(z) =
( H∑
i=1

r(ni, 1)

e(ni)

)−1 ·
H∑
j=1

e−1(nj)Θ(z,nj) (5.3)

which is proportional to the generic theta-series Θ{n}(z) of a quaternary form n of

class number H . In this case we would have

t̄∗q(p2) = bp =
( H∑
i=1

r(ni, 1)

e(ni)

)−1 ·
H∑
j=1

r(nj , p)

e(nj)
. (5.4)

On the other hand from Eichler’s commutation relations (4.3) or (3.5) we know that


...

r(ni,p)
e(ni)

...

 = c−1
p (n)

(r∗(ni, pnj)
e(ni)

)
...

r(nj ,1)
e(nj)

...

 ,

which implies the identity

H∑
i=1

r(ni, p)

e(ni)
= c−1

p (n)
H∑
j=1

( H∑
i=1

r∗(ni, pnj)
e(ni)

)r(nj , 1)

e(nj)
.

But the sum (
∑
i r(ni, pnj)/e(ni)) does not depend on j . (In fact, the sum coincides

with cp(n) times the zero Fourier coefficient of Θ(z,nj)|2T (p); this coefficient is equal

to 1+p for any j). Therefore, together with conjectural relation (5.4), the last identity

would imply that

h∑
i=1

r∗(qi, p2q)

e(qi)
= t̄∗q(p2) = c−1

p (n)
H∑
i=1

r∗(ni, pn)

e(ni)
,
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where cp(n) = (1 +χn(p)) by (3.3) . The above formula can be rewritten in a slightly

more general form

∑
A∈
⋃h
i=1R

∗(q,p2qi)/E(qi)

1 = (1 + χn(p))−1 ∑
M∈

⋃H
i=1R(n,pni)/E(ni)

1 , (5.5)

which makes sense for any nonsingular (integral) ternary form q . Thus, in accordance

with our heuristic argument, we can expect that an automorph A ∈ R(q, p2q′) of

quadratic form q can be “lifted” to an automorph M ∈ R(n, pn′) of some quaternary

form n associated to q . Moreover, relation (5.5) should appear as a consequence of

the expected lifting of automorphs. In the next sections we shall prove that this is so

indeed, by providing an explicit construction for the “lift” (see (6.30), Theorems 7.3,

7.7, and Corollary 7.8).



Chapter 6

Clifford algebras and automorph class lift

Since our construction of the automorph lift is based on Clifford algebras, we start

with a brief review of their properties. In the course we also introduce some convenient

notation. Let

q(X) = q1x
2
1 + b12x1x2 + b13x1x3 + q2x

2
2 + b23x2x3 + q3x

2
3 (6.1)

be an integral nonsingular (ternary) quadratic form. We set

Q0 =


q1 b12 b13

0 q2 b23

0 0 q3

 , B =


−b23

b13

−b12

 . (6.2)

Then the matrix Q of the form q and its determinant det q are given by

Q = tQ0 +Q0 , 2∆ = det q = 2 · (4 detQ0 −Q0[B]) , (6.3)

where detQ0 = q1q2q3 and ∆ = det q/2 . The matrices adjoint to Q0 and Q are

Q̃0 =


q2q3 −q3b12 b12b23 − q2b13

0 q1q3 −q1b23

0 0 q1q2


and

Q̃ = 2(tQ̃0 + Q̃0)−B · tB . (6.4)

With q, we associate the quadratic Z-module (E,q) = (Z3,q) with the corresponding

symmetric bilinear form

b(x, y) = q(x+ y)− q(x)− q(y) , x, y ∈ E , (6.5)

48
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whose matrix (b(ei, ej)) relative to the standard basis e1, e2, e3 of Z3 is Q . The

Clifford algebra C(E) = C(E,q) of (E,q) is a free Z-algebra with monomorphism

ι : E ↪→ C(E) such that ι(x)2 = q(x) · 1C(E) for any x ∈ E . It is uniquely

characterized by the following universal property: for any homomorphism η : E → D

into an algebra D with η(x)2 = q(x) · 1D , there exists unique homomorphism of

algebras τ : C(E)→ D such that the diagram

E
id←−−−− E

η

y
y ι

D
τ←−−−− C(E)

(6.6)

commutes (i.e. η = τ ◦ ι ). The algebra C(E) can be realized as a free Z-module

of rank 8 generated by products of e1, e2, e3 (see [9] for details). We will denote the

product eiej in C(E) by eij and eiejek by eijk . The unit element of C(E) is denoted

by e0 and we identify Z with Ze0 . We also identify E with ι(E) ⊂ C(E) . The even

subalgebra

C0(E) = Ze0 ⊕ Ze23 ⊕ Z(−e13)⊕ Ze12 (6.7)

is a free Z-module of rank 4 generated by products of even number of vectors of E .

(Note the order of the elements of the basis in (6.7)! Strange at first glance, this oder

is natural. This basis of C0(E) will be referred to as the natural basis). Next, putting

C1(E) = Z(−e123)⊕ Ze1 ⊕ Ze2 ⊕ Ze3 one has C(E) = C0(E)⊕ C1(E) . Sometimes

it is also useful to consider C(E) ⊗ Q or C0(E) ⊗ Q – the Clifford algebra of (E,q)

over Q and its even subalgebra, in which C(E) and C0(E) are orders. The algebra

C(E) has an antiautomorphism x 7→ x̄ defined on the generators by

ēj = −ej , j = 1, 2, 3 . (6.8)
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The restriction of the antiautomorphism x 7→ x̄ to C0(E) can be written in coordinates

as

x0e0 +x1e23−x2e13 +x3e12 7→ (x0 +x3b12−x2b13 +x1b23)e0−x1e23 +x2e13−x3e12

(6.9)

and gives us the standard involution on C0(E) . That is to say,

s(x) = x+ x̄ ∈ Z , n(x) = x · x̄ ∈ Z (6.10)

for any x ∈ C0(E) . In particular, each element x of C0(E) satisfies the equation

(z − x)(z − x̄) = z2 − s(x)z + n(x) = 0 which is unique in case x and e0 are linearly

independent. The integers s(x) and n(x) are called respectively the trace and the

norm of x ∈ C0(E) . The norm n turns the even subalgebra C0 into quadratic Z-

module (C0(E),n) of rank 4 with associated bilinear form

s(xȳ) = n(x+ y)− n(x)− n(y) , x, y ∈ C0(E) . (6.11)

The matrix N of the form n with respect to the natural basis (6.7) is

N =


2 −tB

−B (tQ̃0 + Q̃0)

 (6.12)

We easily compute the determinant

det n = ∆2 = ((det q)/2)2 (6.13)

and the inverse matrix

N−1 = ∆−1 ·


2 · detQ0

t(Q0B)

(Q0B) Q

 , (6.14)
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where Q0 and B are given by (6.2). From the above formulas it can be seen that

the quadratic modules (E,q) and (C0(E),n) are closely related. In fact (C0(E),n)

contains a certain quadratic submodule of rank 3 which is “almost identical” (E,q) .

We shall present the construction shortly, but first we need to introduce the special

element

t = e123 + e123 = e123 − e321 ∈ C(E) (6.15)

used by M. Kneser in [9]. Straightforward (but rather tiresome) calculations show

that t belongs to the center of C(E), t = t̄ and

t = (−e123, e1, e2, e3)

(−2

B

)
, t2 = −∆ . (6.16)

Consider now Z-submodule Et of C0(E) . Using (6.16) we see that Et has rank 3 and

(e1t, e2t, e3t) = (e0, e23,−e13, e12) · T

form its Z-basis, where

T =


t(Q0B)

Q

 ∈ Z4
3 . (6.17)

Let us compute the matrix of the restriction of the norm-form n to Et with respect

to the basis e1t, e2t, e3t . We have

N · T =


2 · t(Q0B)− tB ·Q

(tQ̃0 + Q̃0)(tQ0 +Q0)−B · tB · tQ0

 =

(
0 0 0

∆ · 13

)

and so

N [T ] = ∆ ·Q . (6.18)
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Recall that ∆ = det q/2 is an integer (see (6.3)), thus T ∈ R(n,∆q) and (Et,∆q) ↪→
(C0(E),n) as we claimed. Finally, we observe that

−e123 · t = (e0, e23,−e13, e12)


2 detQ0

Q0B

 , (6.19)

which extends multiplication of E by t to an injection C1(E) · t ↪→ C0(E) , whose

matrix with respect to our choice of bases is ∆ ·N−1 .

Let q′′ be another integral ternary quadratic form. With it, we associate a

quadratic module (E′′,q′′) and Clifford algebra C(E′′) exactly as above. Let A ∈
R(q,q′′) be an integral automorph. From the geometric point of view, A determines

an isometry α = αA from the quadratic module (E′′,q′′) into (E,q) :

(αA(e′′1), αA(e′′2), αA(e′′3)) = (e1, e2, e3) · A ,

where e′′1 , e
′′
2 , e
′′
3 is the standard basis of E′′ = Z

3 . Let ι and ι′′ be the natu-

ral inclusions of (E,q) and (E′′,q′′) into corresponding Clifford algebras. Since

(ι ◦ α(x′′))2 = q(α(x′′)) · e0 = q′′(x′′) · e0 for any x′′ ∈ E′′ , there exists a unique

homomorphism of algebras ϕ = ϕA which makes the diagram

(E,q)
αA←−−−− (E′′,q′′)

ι

y
y ι′′

C(E)
ϕA←−−−− C(E′′)

(6.20)

commutative. (This follows immediately from the universal property (6.6) of Clifford

algebras.) Clearly, the homomorphism ϕA is compatible with the involutions (6.8)

on C(E) and C(E′′) :

ϕA(x̄′′) = ϕA(x′′) for all x′′ ∈ C(E′′) . (6.21)
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Therefore the restriction of ϕA to the even subalgebra C0(E′′) is an isometry of

quadratic modules ϕA : (C0(E′′),n′′)→ (C0(E),n) whose matrix with respect to our

choice of bases (6.7) is

ΦA =


1 tA3Q0A2 −tA3Q0A1

tA2Q0A1

0

0 tÃ

0

 , (6.22)

so that

(ϕA(e′′0), ϕA(e′′23), ϕA(−e′′13), ϕA(e′′12)) = (e0, e23,−e13, e12)·ΦA .

Here Aj denotes the jth column of the original automorph A ∈ R(q,q′′) that gave

rise to ΦA ∈ R(n,n′′) . (By n,n′′ we mean the integral quaternary quadratic forms

which are specializations of the corresponding norm-forms in the natural bases (6.7) of

C0(E) and C0(E′′) respectively.) To complete the picture, we also need a description

of the action of ϕA on the special element t′′ ∈ C(E′′) of the form (6.15):

Lemma 6.1. Let A = (aij) ∈ R(q,q′′) be an integral automorph. Let t and t′′

be elements of the form (6.15) of the algebras C(E) and C(E′′) respectively. Then

ϕA(t′′) = (detA) · t

in the notation introduced above.

Proof. Note that the elements of E are multiplied in C(E) by the following rule:

( e1, e2, e3 )


x1

x2

x3

 · ( e1, e2, e3 )


y1

y2

y3

 = ( e0, e23,−e13, e12 )



tY Q0X

x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 .



54

Therefore

ϕA(−e′′123) = −ϕA(e′′1)ϕA(e′′2)ϕA(e′′3) = −αA(e′′1)αA(e′′2)αA(e′′3) =

−1 · ( e1, e2, e3 )A1 · ( e1, e2, e3 )A2 · ( e1, e2, e3 )A3 = (−e123, e1, e2, e3 )

(
δ

Z

)
,

where A = (A1A2A3) , δ = detA, the components z1, z2, z3 of the column Z are given

by

z1 = −(tA2Q0A1)a13 + b13a13â23 + b23a23â23 − b12a13â33 − q2a23â33 + q3a33â23 ,

z2 = −(tA2Q0A1)a23 − b13a13â13 − b23a23â13 + q1a13â33 − q3a33â13 ,

z3 = −(tA2Q0A1)a33 + b12a13â13 + q2a23â13 − q1a13â23 ,

and âij is the cofactor of aij in A . Using (6.16) applied to t′′, we have

ϕA(t′′) = (−e123, e1, e2, e3 )

(
δ 0 0 0

Z A

)(−2

B′′

)
.

On the other hand, from (6.16) we also know the coordinates of t in this basis.

Therefore, in order to prove the lemma it remains to check the relation

A ·


−b′′23

b′′13

−b′′12

− 2 ·


z1

z2

z3

 = δ ·


−b23

b13

−b12

 . (6.23)

Before entering into computations, we make several remarks. First, since tA2Q0A1 +

tA2
tQ0A1 = tA2QA1 = b′′12 , then 2 · tA2Q0A1−b′′12 = tA2(Q0− tQ0)A1 = −b12â33 +

b13â23 − b23â13 . Second, Q[A] = Q′′ implies that δ−1 · tÃQ′′ = QA . Third, (aij) =

A = (A−1)−1 = δ−1 · Ǎ = δ−1 · (ǎij) , where Ǎ is the double adjoint of A . Now we

proceed to calculation of the entries of the column-vector on the left hand side of the

identity (6.23).
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First entry:

−a11b
′′
23 + a12b

′′
13 − a13b

′′
12 − 2z1 =

−b23(a13â13 + a23â23)− b13a13â23 + b12a13â33 − b23a23â23 + 2q2a23â33

−2q3a33â23 − (a11b
′′
23 − a12b

′′
13) =

−δb23 + â33(b12a13 + 2q2a23 + b23a33)− (a11b
′′
23 − a12b

′′
13)−

â23(b13a13 + b23a23 + 2q3a33) =

δ−1â33(â21b
′′
13 + â22b

′′
23 + â232q′′3 )− δ−1â23(â31b

′′
13 + â32b

′′
23 + â332q′′3 )− δb23 =

δ−1b′′13(â33â21− â23a31) + δ−1b′′23(â33â22− â23â32)− (a11b
′′
23− a12b

′′
13)− δb23 =

δ−1b′′13(−ǎ12) + δ−1b′′23(ǎ11)− (a11b
′′
23 − a12b

′′
13)− δb23 = − detA · b23 .

Second entry:

−a21b
′′
23 + a22b

′′
13 − a23b

′′
12 − 2z2 =

b13(a13â13 + a23â23) + â13(b13a13 + b23a23 + 2q3a33)− â33(2q1a13 + b12a23)

−(a21b
′′
23 − a22b

′′
13) =

δ−1â13(â31b
′′
13 + â32b

′′
23)− δ−1â33(â11b

′′
13 + â12b

′′
23)− (a21b

′′
23 − a22b

′′
13) + δb13 =

detA · b13 .

Third entry:

−a31b
′′
23 + a32b

′′
13 − a33b

′′
12 − 2z3 =

−b12(a13â13 + a33â33) + â23(2q1a13 + b13a33)− â11(b12a13 + 2q2a23 + b23a33)

−(a31b
′′
23 − a32b

′′
13) =

δ−1â23(â11b
′′
13 + â12b

′′
23)− δ−1â13(â21b

′′
13 + â22b

′′
23)− (a31b

′′
23 − a32b

′′
13)− δb12 =

− detA · b12 .

This finishes the proof of the Lemma.
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Along with (6.16), the above lemma leads us to the following criterion.

Theorem 6.2. Let ϕ : C0(E′′) → C0(E) be a homomorphism of even subalge-

bras of Clifford algebras associated with ternary quadratic Z-modules (E′′,q′′) and

(E,q) . Let ∆ = det q/2 , ∆′′ = det q′′/2 and let t ∈ C(E) , t′′ ∈ C(E′′) be special

elements of the form (6.15). Then ϕ coincides with the lift (6.20) of an isometry

α : (E′′,q′′)→ (E,q) if and only if

ϕ(E′′ · t′′) ⊂
√

∆′′/∆ · (E · t) . (6.24)

In this case the isometry α is unique (up to sign) and is given by

α(x′′) =
±ϕ(x′′t′′) · t√

∆∆′′
for x′′ ∈ E′′ , (6.25)

where we can fix either “+” or “−”.

Proof. Assuming (6.24),we consider the map α as defined in (6.25). For an

x′′ ∈ E′′ we have:

α(x′′) ⊂ (
√

∆∆′′)−1 · ϕ(E′′t′′) · t ⊂ (
√

∆∆′′)−1
√

∆′′/∆ ·E · t2 ⊂ −|∆|−1∆ ·E ⊂ E .

Furthermore,

q(α(x′′)) = α(x′′) · α(x′′) = (∆∆′′)−1 · ϕ(x′′t′′) · t · ϕ(x′′t′′) · t =

(∆∆′′)−1 ·ϕ(x′′t′′x′′t′′) · t2 = (∆∆′′)−1 ·ϕ(−∆′′(x′′)2) · (−∆) = ϕ(q′′(x′′)) = q′′(x′′) ,

thus α : (E′′,q′′) → (E,q) is indeed an isometry. By (6.20) it can be lifted to an

algebraic homomorphism ϕα : C(E′′) → C(E) the restriction of which to C0(E′′) is

a homomorphism into C(E) . Then

ϕα(e′′ij) = α(e′′i ) · α(e′′j ) = (∆∆′′)−1 · ϕ(e′′i t
′′e′′j t

′′) · t2 =

(∆∆′′)−1(−∆) · ϕ(−∆′′e′′i e
′′
j ) = ϕ(e′′ij) ,
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so ϕα and ϕ coincide on C0(E′′) .

Conversely, if ϕ = ϕα |C0
for some lift ϕα of an isometry α : (E′′,q′′) → (E,q) ,

then

ϕ(x′′t′′) = ϕα(x′′t′′) = ϕα(x′′)·detα·t = α(x′′)·detα·t ⊂ detα·E ·t ⊂
√

∆′′/∆·(E ·t) ,

so (6.24) is satisfied. Identity (6.25) is also true for some choice of sign.

We summarize what we have established so far. The universal property (6.6) of

Clifford algebras allows us to lift an integral automorph A ∈ R(q,q′′) of ternary forms

to an integral automorph ΦA ∈ R(n,n′′) of quaternary forms associated with norms

on the even subalgebras of Clifford algebras. Conversely, the original automorph

A ∈ R(q,q′′) can be recovered by the lift ΦA ∈ R(n,n′′) with the help of Theorem

6.2 above. (We note again that quaternary quadratic forms n , n′′ are specializations

of norm-forms (6.10) in the natural bases (6.7).)

Recall that the quadratic forms we are working with are not necessarily positive

definite and so the sets R(q,q′′) , R(n,n′′) . . . of automorphs or the sets R(q, a) ,

R(n, a) . . . of representations of a number a can be infinite in general. But the quo-

tients modulo the corresponding groups of units (E(q) , E(n) . . .) are always finite for

nonsingular forms. Because of this, it is more convenient sometimes to consider the

orbits modulo groups of units rather than individual automorphs or representations

(compare to section 3). The following lemma shows that this transition is compatible

with the lift (6.22).

Lemma 6.3. Let A,D ∈ R(q,q′′) be integral automorphs. Then A ∈ E(q)D

if and only if ΦA ∈ E(n)ΦD .

Proof. Let E ∈ E(q) be such that A = ED . Consider the following commutative
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diagram:

(E,q)
αE←−−−− (E,q)

αD←−−−− (E′′,q′′)y ι
y ι

y ι′′
C(E)

ϕE←−−−− C(E)
ϕD←−−−− C(E′′)

where the isometries αE , αD and algebraic homomorphisms ϕE , ϕD are defined as in

(6.20). Since αE ◦ αD = αA , we know that there exists unique algebraic homomor-

phism ϕA = ϕED : C(E′′) → C(E) such that ι ◦ αA = ϕA ◦ ι′′ as in (6.20). But

ι◦αA = ι◦αE ◦αD = ϕE ◦ ι◦αD = ϕE ◦ϕD ◦ ι′′ , which implies that ϕED = ϕE ◦ϕD
and thus ΦA = ΦEΦD (see (6.22)). Note that since E ∈ E(q) then ΦE ∈ E(n) .

Conversely, assume that ΦA ∈ E(n)ΦD . Then ΦAΦ−1
D ∈ E(n) and in particular


1 ∗ ∗ ∗
0

0 tÃ

0




1 ∗ ∗ ∗
0

0 tD̃−1

0

 =


1 ∗ ∗ ∗
0

0 1
detD

tÃ · tD
0


is an integral matrix. But detD = detA , so tA−1 ·tD is also an integral matrix. Then

E = DA−1 is also integral and Q[E] = Q[DA−1] = Q′′[A−1] = Q , i.e. E ∈ E(q)

and A ∈ E(q)D .

Remark . An obvious modification of the above proof shows that

A ∈ D · E(q′′) ⇐⇒ ΦA ∈ ΦD · E(n′′) .

We will also need the following technical result.

Lemma 6.4. Assume that (ternary) quadratic forms q and q′′ belong to the

same similarity class. Then q and q′′ are integrally equivalent if and only if the

corresponding quadratic forms n and n′′ (see (6.12)) are integrally equivalent.
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Proof. Suppose q and q′′ belong to the same equivalence class, i.e. there exists a

matrix U ∈ R(q,q′′)∩Λ3 . Then αU : (E′′,q′′)→ (E,q) is an isometric isomorphism

of quadratic modules which gives rise to an isomorphism ϕU : C(E′′) → C(E) of

Clifford algebras exactly as in (6.20). The restriction of ϕU to C0(E′′) is an isomor-

phism of even subalgebras whose matrix with respect to the natural bases (6.7) is

ΦU ∈ R(n,n′′) ∩ Λ4 (see (6.22)). Thus n and n′′ are integrally equivalent.

Conversely, suppose that there exists U ∈ R(n,n′′)∩Λ4 . The matrix U defines a

(linear) isometric isomorphism of quadratic modules:

υ : (C0(E′′),n′′) −→ (C0(E),n) ,

(υ(e′′0), υ(e′′23), υ(−e′′13), υ(e′′12)) = (e0, e23,−e13, e12) · U .

Since n(υ(e′′0)) = n′′(e′′0) = 1 , the element υ(e′′0) has an inverse υ(e′′0)−1 = υ(e′′0) ∈
C0(E) whose norm is also 1. Then the right multiplication x 7→ x · υ(e′′0) is a (linear)

isometric automorphism of C0(E) . The composition of these two isometries

ω : x′′ 7→ υ(x′′) · υ(e′′0) x′′ ∈ C0(E′′)

gives an isometric isomorphism of quadratic modules (C0(E′′),n′′) → (C0(E),n)

which maps e′′0 to e0 . Therefore, its matrix with respect to natural bases (6.7) has

the form

W =


1 ∗ ∗ ∗
0

0 W

0

 with W ∈ Λ3 .

Further, since N [W ] = N ′′ , then N−1[tW−1] = (N ′′)−1 with N−1 , (N ′′)−1 given

by (6.14). By our assumption the forms q and q′′ are similar, in particular ∆ =
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det q/2 = ∆′′ . Therefore (6.14) implies


2 detQ0

t(Q0B)

(Q0B) Q


[


1 0 0 0

∗
∗ tW−1

∗


]

=


2 detQ′′0

t(Q′′0B
′′)

(Q′′0B
′′) Q′′

 .

It follows that Q[tW−1] = Q′′ with W ∈ Λ3 , i.e. the quadratic forms q and q′′ are

(integrally) equivalent.

Now we proceed directly to an automorph analog of Shimura’s lift. Let q′ be a

quadratic form similar to q (see section 1) and let p be a prime number coprime to

det q = det q′ . Given an integral automorph A ∈ R(q, p2q′) we can set q′′ = p2q′

and apply the construction (6.20) to get the homomorphism ϕA of Clifford algebras:

(E,q)
αA←−−−− (E′′, p2q′)

ι

y
y ι′′

C(E,q)
ϕA←−−−− C(E′′, p2q′)

(6.26)

The restriction of ϕA to the even subalgebra C0(E′′, p2q′) yields an automorph ΦA ∈
R(n,n′′) = R(N,N ′′) given by (6.22). Here N is the matrix (6.12) and

N ′′ =


2 −p2 · tB′

−p2B′ p4(tQ̃′0 + Q̃′0)

 = N ′
[( 1

p213

)]
(6.27)

is the matrix (6.12) of the norm-form (6.10) of the even subalgebra C0(E′′, p2q′) with

respect to its natural basis (6.7). Note that C0(E′′, p2q′) can be identified with the

subring of C0(E′,q′) spanned by e′0, p
2e′23,−p2e′13, p

2e′12 . (Indeed, the natural isom-

etry of quadratic modules E′′ ∼= pE′ defined by e′′i 7→ pe′i gives rise to an algebraic

monomorphism C(E′′, p2q′) ↪→ C(E′,q′) , the restriction of which to the even subal-



61

gebra is the desired ring homomorphism.) In particular, N ′ on the right hand side of

(6.27) is exactly the matrix (6.12) of the norm-form n′ on the subalgebra C0(E′,q′) .

Combining (5.27) with the relation N [ΦA] = N ′′, we conclude that if A ∈ R(q, p2q′),

then N [ΨA] = N ′[(p · 14)] = p2N ′, where we set

ΨA = ΦA ·
(
p

p−113

)
=


p p−1( tA3Q0A2 −tA3Q0A1

tA2Q0A1 )

0

0 p2 · tA−1

0

 .

(6.28)

Lemma 6.5. In the above notations ΨA ∈ R(n, p2n′) , in particular, the matrix

ΨA is integral.

Proof. We already know that N [ΨA] = p2N ′ therefore, to prove the lemma it

remains to show that ΨA is integral. Since A ∈ R(q, p2q′), we have Q[A] = p2Q′ and

so p2A−1 = (det q)−1Q̃′tAQ, which implies that det q · p2A−1 is an integral matrix.

But detA = p3 is coprime to det q , thus p2A−1 is integral. Next we need to deal

with the first row of ΨA in (6.28). Denote

tZA =
(
tA3Q0A2,−tA3Q0A1,

tA2Q0A1
)
. (6.29)

Then

N [ΦA] =


2 2 · tZA − p3 · t(A−1B)

∗
∗ 1

2(p4Q̃′ + (2ZA − p3A−1B)t(2ZA − p3A−1B))

 = N ′
[( 1

p213

)]
,

which implies that 2ZA−p3A−1B = −p2B′ ≡ 0 (mod p2) . But p2A−1 is integral, so

p3A−1B ≡ 0 (mod p) and therefore ZA ≡ 0 (mod p) . Thus ΨA is indeed an integral

matrix.

We conclude that the correspondence A 7→ ΨA gives us an injection R(q, p2q′) ↪→
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R(n, p2n′) . Because of Lemma 6.3, we can also view this map as injection

Ψ : E(q)\R(q, p2q′) ↪−→ E(n)\R(n, p2n′) , p 6 | det q . (6.30)

Remark 6.6. The above construction does not depend on primality of p

and works equally well for any number a coprime to det q resulting in injection

R(q, a2q′) ↪−→ R(n, a2n′) . In particular, if q is similar to q′ then n is similar

to n′ .

Remark 6.7. The lift Ψ is also compatible with the bijection R(q, p2q′) −→
R(q′, p2q) given by A 7→ p2A−1 in the sense that Ψp2A−1 = p2Ψ−1

A ∈ R(n′, p2n) .

Indeed, the fact that Ψp2A−1 and p2Ψ−1
A both belong to R(n′, p2n) follows directly

from definition of Ψ . Then using the equality N ′[Ψp2A−1 ] = N ′[p2Ψ−1
A ] together

with (6.12) and (6.28), we see that Ψp2A−1 = p2Ψ−1
A .



Chapter 7

Factorization of automorph lifts

Thus, we can lift an automorph A ∈ R(q, p2q′) of ternary quadratic forms to an

automorph ΨA ∈ R(n, p2n′) of quaternary forms (see 5.28). But with quaternary

quadratic forms we are no longer limited to multipliers p2 and can use automorphs

with multipliers p (compare to the existence of Hecke operators T (p) rather than

T (p2) for corresponding theta-series). By [2, Theorem 1.3], each integral automorph

A ∈ R(n, p2n′) , p 6 | det n is a product ML of automorphs M ∈ R(n, pf) and L ∈
R(f , pn′) for some quadratic form f similar to n . Our next goal is to describe explicitly

such factorizations for the lift ΨA ∈ R(n, p2n′) constructed above. Since the general

strategy behind Clifford algebras is to replace questions about representations by

quadratic forms with questions concerning multiplicative arithmetic of these algebras,

we shall try to use certain properties of ideals of the algebras for our purposes. First,

we are going to look more closely at the algebraic homomorphism ϕA in (6.26) the

restriction of which to the even subalgebra C0(E′′, p2q′) defines the lift ΨA via (6.28).

Recall that the restricted ϕA can be regarded as a ring homomorphism

ϕA : (e′0, p
2e′23,−p2e′13, p

2e′12)Z4 −→ C0(E,q) ,

(ϕA(e′0), ϕA(p2e′23), ϕA(−p2e′13), ϕA(p2e′12)) = (e0, e23,−e13, e12) · ΦA ,

defined on the corresponding order of C0(E′,q′) . This homomorphism can easily be

extend to an isomorphism of Q-algebras:

ϕA : C0(E′,q′)⊗Q −→ C0(E,q)⊗Q ,

whose matrix with respect to the natural bases is ΦA · diag(1, p−2, p−2, p−2) =

p−1ΨA . Using Lemma 6.5 one can see that the matrix ΦA · diag(1, p−1, p−1, p−1) is

63
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integral, which implies that the image under ϕA of the order of C0(E′) generated by

e0, pe
′
23,−pe′13, pe

′
12 belongs to C0(E) . Then from (6.28) it follows that the submod-

ule (e0, e23,−e13, e12)ΨA · Z4 ⊂ C0(E) is none other than the image ϕA(pC0(E′))

of the principle ideal pC0(E′) ⊂ C0(E′) and therefore is itself an ideal of the of the

order ϕA(C0(E′)) ∩ C0(E) . Consider the left C0(E)-ideal

IA = C0(E) · ϕA(pC0(E′)) , (7.1)

which extends ϕA(pC0(E′)) .

Lemma 7.1. In the above notation, IA is a proper (left) C0(E)-ideal that properly

includes ϕA(pC0(E′)) :

ϕA(pC0(E′)) ⊂ IA ⊂ C0(E) .

Moreover, the norm of any element of IA is divisible by p .

Proof. The inclusions themselves are clear, and we only need to prove that both

of them are proper. To show that ϕA(pC0(E′)) 6= IA , suppose the contrary. Since

IA is a left C0(E)-ideal, we would then obtain the inclusion c · ϕA(pC0(E′)) ⊂
ϕA(pC0(E′)) for any c ∈ C0(E) . Recall that, as an isomorphism of Q-algebras ϕA is

invertible, the matrix of ϕ−1
A with respect to the natural bases is pΨ−1

A = p−1Ψp2A−1 ,

in particular ϕ−1
A (C0(E)) ⊂ p−1C0(E′) . Thus, our assumption would imply that

ϕA(ϕ−1
A (c) · pC0(E′)) ⊂ ϕA(pC0(E′)) and so ϕ−1

A (c) · pC0(E′) ⊂ pC0(E′) for any

c ∈ C0(E) . The latter inclusion would be possible only if ϕ−1
A (c) ∈ C0(E′) for any

c ∈ C0(E) , which is definitely not the case (for example for c = e23 ). Therefore

ϕA(pC0(E′)) is a proper subset of IA . Next, to prove that IA 6= C0(E) we show

that the norm of any element of IA is divisible by p . Indeed, any element of IA =

C0(E) ·ϕA(pC0(E′)) is a sum of elements of the form c ·ϕA(pc′) with c ∈ C0(E) and

c′ ∈ C0(E′) . Observe that n(ϕA(pc′)) ≡ 0 (mod p2) for any c′ ∈ C0(E′) , by Lemma

6.5 . It remains to note that if b, c ∈ C0(E) and b′, c′ ∈ C0(E′) then

n(b ϕA(pb′) + c ϕA(pc′)) = n(b ϕA(pb′)) + n(c ϕA(pc′)) + s(b ϕA(pb′) · c ϕA(pc′)) ≡
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s(b ϕA(pb′) · ϕA(p c′) c̄) ≡ s(pb ϕA(pb′ c′) c̄) ≡ p · s(b ϕA(pb′ c′) c̄) ≡ 0 (mod p) ,

therefore n |IA ≡ 0 (mod p) as claimed and so IA is a proper subset of C0(E) .

The above lemma immediately leads to the following statement.

Lemma 7.2. Let IA be a generating matrix of the extension ideal IA (7.1)

with respect to the natural basis, so that IA = (e0, e23,−e13, e12) · IAZ4 . Then

ΨA ∈ IAZ4
4, IA ∈ R(n, pf) where the integral quadratic form

fIA =
n |IA√
|IA|

is similar to n . Here we have set |IA| = |IA| = |C0(E)/IA| , the index of IA in

C0(E) .

Proof. Indeed, since IA is a proper (left) ideal of C0(E) , we know that |IA| 6= 1 .

Moreover, for a fixed element i ∈ IA we have C0(E) · i ⊂ IA and thus C0(E) · i =

(e0i, e23i,−e13i, e12i)Z
4 = (e0, e23,−e13, e12) · IAY Z4 with some Y ∈ Z4

4 . Then,

looking at the matrix of the restriction of the norm-form n to the submodule C0(E) ·
i ⊂ C0(E) we see that n(i)N = N [IAY ] which implies that |IA| divides n2(i) . Denote

|IA| = a2b with a square-free positive integer b . Clearly, then ab divides n(i) , but

i ∈ IA was arbitrary and therefore the form 1
abn|IA is integral as well as its matrix

(ab)−1N [IA] with respect to the natural basis. In particular det
(
(ab)−1N [IA]

)
=

(|IA|2 det n)/(ab)4 = (det n)/b2 = (∆/b)2 is integral and so b divides ∆ = det q/2 ,

see (6.13). On the other hand, using Lemma 7.1 we also see that ϕA(pC0(E′)) is a

proper subset of IA which in terms of corresponding matrices means that ΨA = IAX
for some X ∈ Z4

4 , |X | 6= 1 and in particular |IA| is a proper divisor of |ΨA| = p4 .

Therefore b | gcd(∆, p4) , but in accordance with our assumption the prime p is

coprime to det q = 2∆ thus b = 1 and |IA| = p2 . We conclude that the quadratic

form

fIA(x) =
n |IA (x)√
|IA|

= p−1 · n |IA (x) (7.2)
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is integral. The matrix of fIA with respect to the natural basis (e0, e23,−e13, e12) ·IA
is FIA

= p−1N [IA] ∈ Z4
4 and its determinant det fIA is equal to det n . Summing up

we see that fIA is similar to n and that IA ∈ R(n, p fIA) .

In essence, Lemmas 7.1 and 7.2 allow us to write a lift ΨA ∈ R(n, p2n′) as a

product of automorphs with multipliers p of similar quadratic forms n , n′ and f . Note

that the quadratic form f = fIA in the above factorization is associated with a class

of equivalent (left) ideals of C0(E,q) and is defined only up to integral equivalence,

see (7.2). (Two left C0(E)-ideals I, J ⊂ C0(E) are called equivalent if Iα = Jβ for

some α, β ∈ C0(E) .) A similar factorization of ΨA can be obtained if we consider

the extension of ϕA(pC0(E′)) to the right ideal ϕA(pC0(E′)) · C0(E) instead of the

left ideal as in (7.1). Now we seek to find the total number of such factorizations

(different modulo corresponding groups of units) for a given ΨA . Following a general

method developed in [1], we shall view a matrix M ∈ R(n, p f) for a quadratic form

f similar to n as a solution of the quadratic congruence

n[M] ≡ 0 (mod p) ,

whose matrix of elementary divisors is equal to Dp = diag(1, 1, p, p) . That is to

say, M belongs to the double coset Λ4DpΛ4 which is a necessary condition for M
to determine an automorph with multiplier p of similar quaternary quadratic forms.

(Indeed, we should have |M| = p2 and pM−1 ∈ Z4
4 , which leaves us with Dp as the

only possible matrix of elementary divisors.) Since at the moment we do not want to

distinguish a particular form f in its equivalent class {f [U ] ; U ∈ Λ4} , we will next

be counting only different left cosets MΛ4 ⊂ Λ4DpΛ4/Λ4 . Finally, because of our

interest in factorizations of automorphs with multipliers p2 , we restrict our search to

only those automorphsM , which divide (from the left) a particular A ∈ R(n, p2n′) .

Thus, following [1], in order to find the total number of factorizations of A one
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introduces isotropic sums

Sp(n,Dp,A) =
∑

M∈Λ4DpΛ4/Λ4

n[M]≡ 0 (mod p) ,M|A

1 . (7.3)

General isotropic sums of the above type were computed in [1, Theorem 5.1] (see also

[2] and [4]). The idea behind the computation is to relate a matrix L ∈ Z4
∗ to the

subspace Vp(L) of the quadratic space
(
(Z/pZ)4,n mod p

)
spanned by the columns

of L modulo p . Then the summation conditions on M in (7.3) mean exactly that

Vp(M) is a 2-dimensional isotropic subspace of
(
(Z/pZ)4,n

)
which contains fixed

subspace Vp(A) . The number of such subspaces can be found with help of standard

methods of Geometric Algebra over finite fields (see [9]). Specializing results of [1,

Theorem 5.1] to our case we find that

Sp(n,Dp,A) =


1 if rankFp A = 2,

1 + χn(p) if rankFp A = 1,

(1 + χn(p))(p+ 1) if rankFp A = 0,

(7.4)

where p 6 | det q and χn(p) is the character (3.4) of the form n . (Note that χn(p) = 1

for p 6 | det q because of (6.13).) The above sum can be rewritten as follows. The

condition N [M] ≡ 0 (mod p) means that N [M] = pF for some even matrix F

of oder 4 . Since detM = detDp = p2 , we have detF = detN and thus the

quadratic form f(X) = 2−1F [X] is similar to n . SinceM is determined only modulo

right multiplication by Λ4 , we can replace F by any (integrally) equivalent form

F [U ] , U ∈ Λ4 . We fix a complete system {n1, . . . ,nH} of representatives of different

equivalence classes of the similarity class of n (as in (5.2)). Note that h ≤ H because

we can choose ni with 1 ≤ i ≤ h to be quadratic forms defined by the norms on the

even Clifford subalgebras C0(Z3,qi), 1 ≤ i ≤ h . (Indeed, by Lemmas 6.4 and 6.5

these ni’s 1 ≤ i ≤ h belong to the different equivalence classes of the same similarity

class.) Then for eachM∈ Λ4DpΛ4/Λ4 with N [M] ≡ 0 (mod p) there exists a unique

number i , 1 ≤ i ≤ H such that n[MU ] = pni for some U ∈ Λ4 . Next we note that

by the theory of elementary divisors (see [3, Lemma 3.2.2]) R(n, pni) ⊂ Λ4DpΛ4 ,
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therefore,

Sp(n,Dp,A) =
H∑
i=1

∑
M∈R(n,pni)/E(ni)

M|A

1 , (7.5)

which already resembles the right hand side of the conjectural relation (5.5) we seek

to establish. Similar considerations of another isotropic sum allow us to compute

also the left hand side of (5.5). Indeed, let {q1, . . . ,qh} be a complete system (5.2).

By the theory of elementary divisors the set of primitive automorphs R∗(q, p2qi)

coincides with R(q, p2qi) ∩ Λ3DpΛ
3 , where Dp = diag(1, p, p2) , see [4 Lemma 3.1].

Conversely, any A ∈ Λ3DpΛ
3/Λ3 such that Q[A] ≡ 0 (mod p2) defines a quadratic

form, namely, p−2 q[A], which is similar to q and therefore is integrally equivalent to

exactly one of the forms qi so that q[AU ] = p2qi for a unique number i , 1 ≤ i ≤ h

and some U ∈ Λ3 . We conclude that

h∑
i=1

∑
A∈R∗(q,p2qi)/E(qi)

1 = Sp2(q, Dp, O3) =
∑

A∈Λ3DpΛ3/Λ3

Q[A]≡ 0 (mod p2)

1 , (7.6)

where O3 is the zero matrix of order 3. Furthermore, using [4, Theorem 2.2] we can

provide an explicit value of the isotropic sum (7.6):

Sp2(q, Dp, O3) = p+ 1 . (7.7)

Combining formulas (7.3)–(7.7) we finally establish (5.5) and deduce the following

Theorem, which expresses total number of ternary automorphs of q with multiplier

p2 in terms of quaternary automorphs with multiplier p and can be viewed as a

generalization of Shimura’s correspondence for theta-series of ternary positive definite

quadratic forms to the case of indeterminate forms:

Theorem 7.3. Let q be an integral nonsingular ternary quadratic form (6.1)

with determinant det q = 2∆ , and let p be a prime not dividing 2∆ . Fix a complete

system {q1, . . . ,qh} of representatives of different equivalence classes of the similarity
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class of q . Then

∑
A∈
⋃h
i=1R

∗(q,p2qi)/E(qi)

1 = (1 + χn(p))−1 ∑
M∈

⋃H
i=1R(n,pni)/E(ni)

1 ,

where n is the integral quaternary quadratic form determined (in some basis) by the

norm (6.10) on the even subalgebra C0(E) of the Clifford Algebra C(E,q), χn(p) =(
(−1)2∆2

p

)
is the character (3.4) of n , and {n1, . . . ,nH} is a complete system of

representatives of equivalent classes in the similarity class of n .

Proof. Indeed, taking A to be the zero matrix of order 4 in (7.4) and using (7.7)

we see that

Sp2(q, Dp, O3) = (1 + χn(p))−1 Sp(n,Dp, O4)

Because of (7.5) and (7.6), this relation between the isotropic sums is equivalent to

the above relation between numbers of automorphs, which also proves (5.5).

Tracing back the considerations of section 4, we can see that the above theorem

immediately implies the following statement.

Corollary 7.4. With the notation and under the assumptions of Theorem

7.3, let in addition q be positive definite. Then Shimura’s lift of the generic theta-

series Θ{q}(z) and the generic theta-series Θ{n}(z) of the norm n on the even Clifford

subalgebra C0(E,q) have the same eigenvalues p + 1 for all Hecke operators T (p)

with p 6 | det q.

Unfortunately, up to the present the isotropic sums of type (7.3) or (7.6) have not

been computed in the case of prime p dividing the determinant of the corresponding

quadratic form. This prevents us from comparing directly the eigenvalues of Θ{n}(z)

and of Shimura’s lift of Θ{q}(z) on singular Hecke operators T (p) , where p is a

divisor of the level. Thus, the question as to whether Shimura’s lift of Θ{q}(z) for an

arbitrary ternary form q is always proportional to Θ{n}(z) remains open.

Nevertheless automorph class lifting A 7→ ΨA (6.30) constructed in section 5 al-

lows us to make progress in another direction and exhibit algebraic origins of the rela-

tion (5.5) and, therefore, of Shimura’s correspondence for generic theta-series. Indeed,
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because of Eichler’s commutation relation (3.5), linear combinations of theta-series

invariant under Hecke operators (such as generic theta-series, for example) are deter-

mined by corresponding sets of automorphs with multipliers p or p2 (in accordance

with the weight of the theta-series). Thus, algebraic relations between various sets of

automorphs can in principle be responsible for correspondences between certain linear

combinations of theta-series. (Moreover, they can provide a natural generalization of

such correspondences to the case of indeterminate forms.) In particular, in the case

of Shimura’s lift of generic theta-series of ternary forms we seek relations between

two sets of automorphs:

h⋃
i=1

E(qi)\R∗(qi, p2q) and
H⋃
j=1

E(nj)\R(nj , pn) ,

of ternary and quaternary quadratic forms respectively. Recall that by factoring ΨA

in Lemmas 7.1 and 7.2, we extended our automorph lift A 7→ ΨA to an inclusion

A 7→ IA of ∪iE(qi)\R∗(qi, p2q) into ∪jE(nj)\R(nj , pn) . Now we claim that this

map is in fact an injection whose inverse can be extended in a natural way, which

turns the set of quaternary automorphs with multiplier p into a 2-fold covering of the

set of ternary automorphs with multipliers p2 . More precisely we have the following

Theorem 7.5. Let q be an integral nonsingular ternary quadratic form with

matrix Q given by (6.3), and let N be the matrix (6.12). If p is a prime number

coprime to det q , then for anyM∈ Λ4DpΛ4/Λ4 such that N [M] ≡ 0 (mod p) there

exists (a unique) A ∈ Λ3DpΛ
3/Λ3 such that Q[A] ≡ 0 (mod p2) and M|ΨA (see

(6.28)).

Proof. First of all, if M|ΨA, then M−1ΨA is an integral automorph (of quater-

nary forms) with multiplier p , and thus pΨ−1
A M is an integral matrix. Therefore,

using Remark 6.7 we see that

M|ΨA ⇐⇒ Ψp2A−1 · M ≡ 0 (mod p) . (7.8)

Next, let M = UDpW with U ,W ∈ Λ4 . Since N [M] ≡ 0 (mod p) if and only if
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N [MW−1] ≡ 0 (mod p) , Ψp2A−1M ≡ 0 (mod p) if and only if Ψp2A−1MW−1 ≡
0 (mod p) and M is defined only up to right multiplication by Λ4 , it is suffices to

consider W = 14 and M = UDp .

Similarly, let A = V DpW with V,W ∈ Λ3 . Clearly Q[A] ≡ 0 (mod p2) if and

only if Q[AW−1] ≡ 0 (mod p2) . We also claim that Ψp2A−1M ≡ 0 (mod p) if

and only if Ψp2WA−1M ≡ 0 (mod p) . Indeed, consider the following commutative

diagram:

(Z3,q[p−1AW−1])
αW←−−−− (Z3,q[p−1A])

α
p2A−1
←−−−− (E, p2q)y ι

y ι
y ι

C(Z3,q[p−1AW−1])
ϕW←−−−− C(Z3,q[p−1A])

ϕ
p2A−1
←−−−− C(E, p2q)

Using (6.20),(6.22) and (6.28) we can see that Ψp2WA−1 = ΦW ·Ψp2A−1 ∈ Λ4Ψp2A−1

because ϕW is an isomorphism of Clifford algebras. Thus we can take W = 13 and

A = V Dp . Next we set V = (V1, V2, V3) and

U = (U1,U2,U3,U4) =

(
u1 u2 u3 u4

Ǔ1 Ǔ2 Ǔ3 Ǔ4

)
.

Thus given M = UDp = (U1,U2, pU3, pU4) with tUiNUj ≡ 0 (mod p) for i =

1, 2 we want to find A = V Dp = (V1, pV2, p
2V3) such that V ∈ Λ3 with Q[V1] ≡

0 (mod p2) , tV2QV1 ≡ 0 (mod p) and

Ψp2A−1 · M =


p tZ

0 tV1

0 p tV2

0 p2 tV3

 ·
(
u1 u2 p u3 p u4

Ǔ1 Ǔ2 p Ǔ3 p Ǔ4

)
≡ 0 (mod p) ,

where Z = p−1Z(p2A−1) depends on V , see (6.28). The latter condition is equivalent

to the system of congruences tZǓi ≡ 0 (mod p) , tV1Ǔi ≡ 0 (mod p) for i = 1, 2 .
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Note that all of the above conditions on the columns of a matrix V ∈ Λ3 are modulo

p (or p2) and therefore the choice of particular representatives mod p2 is irrelevant as

long as V ∈ Λ3 . Recall that columns V1, V2 ∈ Z3 can be complemented to a matrix

(V1, V2, V3) ∈ Λ3 if and only if the greatest common divisor of principal minors of

(V1, V2) ∈ Z3
2 is 1. Using the above remarks and Lemma 2.3 above we can replace the

condition V ∈ Λ3 by linear independence of V1 and V2 modulo p . Thus, combining all

the conditions, we need to find V1, V2 ∈ Z3 such that V1, V2 are linearly independent

modulo p and 

Q[V1] ≡ 0 (mod p2)

tV2QV1 ≡ 0 (mod p)

tV1 · Ǔi ≡ 0 (mod p) for i = 1, 2

tZ · Ǔi ≡ 0 (mod p) for i = 1, 2 .

Denote

W = tU−1 = (W1,W2,W3,W4) =

(
w1 w2 w3 w4

W̌1 W̌2 W̌3 W̌4

)
∈ Λ4 ,

then tW · U = (tWi · Uj) = 14 which implies that wi · uj + tW̌i · Ǔj ≡ 0 (mod p) if

i 6= j . Next,since N [UDp] ≡ 0 (mod p) , using (6.14) we obtain

Ñ [tU−1] = ∆ ·


2 detQ0

t(Q0B)

(Q0B) Q


[

wi

... ...

W̌i


]

=


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ p p

∗ ∗ p p


and therefore tWiÑWj ≡ 0 (mod p) for i, j = 3, 4 . Since W ∈ Λ4 , the columns

W3,W4 are linearly independent modulo p and thus their linear span (over Fp) con-

tains a column X 6≡ 0 (mod p) whose first component is zero modulo p:

aW3 + bW4 = X ≡
(

0

X̌

)
(mod p) , X̌ 6≡ 0 (mod p) .

Using the properties of W3,W4 exhibited above, we see that tX̌Ǔi ≡ tXU i ≡
0 (mod p) for i = 1, 2 and Q[X̌] ≡ ∆−1Ñ [X ] ≡ 0 (mod p) . By [4, Lemma 2.3]
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there exists p2 distinct (modulo p2) columns X ∈ Z3 such that X ≡ X̌ (mod p) and

Q[X] ≡ 0 (mod p2) . For any of these columns we can take V1 ≡ X (mod p2) .

Next, consider the congruence tV1QY ≡ 0 (mod p) as a linear equation with

3 variables over Fp . Since Q ∈ GL3(Fp) and V1 6≡ 0 (mod p), we also have

tV1Q 6≡ 0 (mod p) and therefore the space of solutions of the above equation is

two dimensional. One nontrivial solution is V1 . Thus there exists V2 ∈ Z3 such

that tV1QV2 ≡ 0 (mod p) and V1, V2 are linearly independent modulo p . Using

Lemma 2.3 we can change V1 and V2 modulo p2 in such a way that the matrix

(V1, V2) becomes primitive and therefore complementable to an invertible matrix

V = (V1, V2, V3) ∈ Λ3 . Thus given U ∈ Λ4 such that N [UDp] ≡ 0 (mod p) we can

find V ∈ Λ3 such that Q[V Dp] ≡ 0 (mod p2) and tV1Ǔi ≡ 0 (mod p) for i = 1, 2 .

To prove the Theorem we still need to show that tZǓi ≡ 0 (mod p) for i = 1, 2

(Z depends on V , see above). Luckily, this condition is met automatically with our

choice of V . Indeed, set A = V Dp and q′ = p−2 · q[A] , then A ∈ R(q, p2q′) and so

p2Ψ−1
A = Ψp2A−1 ∈ R(n′, p2n) , in other words N ′[Ψp2A−1 ] = p2N (see (6.12),(6.27)

and Remark 6.7). Then N ′[Ψp2A−1 · Ui] = p2N [Ui] ≡ 0 (mod p3) for i = 1, 2 . But

Ψp2A−1 · Ui =


p tZ

0 tV1

0 ptV2

0 p2tV3

 ·

ui

Ǔi

 ≡


tZǓi

0

0

0

 (mod p) for i = 1, 2

by the above choice of V , therefore using (6.12) we haveN ′[Ψp2A−1 ·Ui] ≡ 2(tZǓi)
2 ≡

0 (mod p) and so tZǓi ≡ 0 (mod p) for i = 1, 2 as claimed (recall that p 6= 2 since

2| det q ).

Summing up, there exists A such that Ψp2A−1 · UDp ≡ 0 (mod p) , i.e. M|ΨA .

Finally, it is easy to see that for a given M ∈ ∪iR(n, pni)/E(ni) such an A ∈
∪jR(q, p2qj)/E(qj) is unique. Indeed, first note that since A ∈ Λ3DpΛ

3 then the
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double coset Λ4ΨAΛ4 contains matrix of the form


p ∗ ∗ ∗
0

0 Dp

0


and so rankFp ΨA is either 1 or 2 . Then (7.4) implies that each ΨA ∈ R(n, p2n′) is

divisible from the left by at most 2 = 1 +χn(p) different cosetsM∈ ∪Hi=1R(n, pni)/

E(ni) . (The same is true for any A ∈ ∪iR∗(q, p2qi) ). If the same M would divide

ΨA for different classes of A’s, then the union over A

⋃
A∈∪hi=1R

∗(q,p2qi)/E(qi)

{ M ∈ ∪Hj=1R(n, pnj)/E(nj) ; M|ΨA } (7.9)

would not be disjoint and, therefore, its cardinality would be less than

(1 + χn(p)) ·
h∑
i=1

r∗(q, p2qi)/e(qi) = (1 + χn(p)) · (p+ 1) .

On the other hand, we have proved that any M ∈ ∪jR(n, pnj)/E(nj) divides some

ΨA from the left and, thus, belongs to the union (7.9), whose cardinality in view of

this should be at least (1 +χn(p)) · (p+ 1) , see (7.4) and (7.5). We conclude that for

any M there exists exactly one A ∈ Λ3DpΛ
3/Λ3 such that Q[A] ≡ 0 (mod p2) and

M|ΨA . Incidentally we have also proved that rankFp ΨA = 1 for any such A .

Remark 7.6. The above result means that for any class ME(ni) ∈ R(n, pni)/

E(ni) there exists a unique class AE(qj) ∈ R∗(q, p2qj)/E(qj) such that any M′ ∈
ME(ni) divides from the left ΨA′ for any A′ ∈ AE(qj) . Thus, the correspon-

dence established above is indeed between classes modulo groups of units rather than

between individual automorphs. (To see this, we let A′ = AE and M′ = ME
with E ∈ E(qj), E ∈ E(ni) . Then using (6.28), (7.8) and Lemma 6.3 we ob-

tain M′|ΨA′ ⇔ Ψ
p2A′−1 · ME ≡ 0 (mod p) ⇔ ΦE−1Ψp2A−1 · M ≡ 0 (mod p) ⇔

M|ΨA, because ΦE−1 ∈ E(nj) and so it is invertible.)
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In order to obtain a generalization of Shimura’s lift in terms of the automorph

class theory, we need to consider correspondences between left (rather than right)

classes of automorphs. To this end we extend the automorph class lift Ψ (6.28) and

define a map Υ : ∪iE(qi)\R∗(qi, p2q)→ ∪jE(nj)\R(nj , pn) via the following chain,

the elements of which are already familiar (see Lemmas 6.5 and 7.2):

Υ : A 7→ ΨA 7→ p2(ΨA)−1 = Ψp2A−1 7→ Ip2A−1 7→ p(Ip2A−1)−1 = ΥA (7.10)

Summing up our knowledge about the above maps, we arrive at the following state-

ment.

Theorem 7.7. Let q be an integral nonsingular ternary quadratic form and

let n be the integral quadratic form determined (up to integral equivalence) by the

norm on the even subalgebra of the Clifford algebra C(q) . Take {q1, . . . ,qh} and

{n1, . . . ,nH} to be complete systems of representatives of different equivalence classes

of the similarity classes of q and of n respectively. Let p be a prime number coprime

to det q . Then the map of classes of automorphs A 7→ ΥA defined via (7.10), (6.28)

and Theorem 7.5:

Υ :
h⋃
i=1

E(qi)\R∗(qi, p2q) ↪−→
H⋃
j=1

E(nj)\R(nj , pn)

is an injection, such that for any class of automorphs A ∈ ∪iE(qi)\R∗(qi, p2q) , its

image ΥA divides from the right the lift ΨA .

Proof. Indeed, the map Ψ : E(qi)\R∗(qi, p2q) → E(ni)\R∗(ni, p2n) is an injec-

tion by (6.30) and Lemmas 6.3 , 6.5. The second element of our chain is the bijection

M 7→ p2M−1 of classes of primitive automorphs E(ni)\R∗(ni, p2n)→ R∗(n, p2ni)/

E(ni) restricted to the image of Ψ . The identity p2(ΨA)−1 = Ψp2A−1 was estab-

lished in Remark 6.7. The map Ψp2A−1 7→ Ip2A−1 , R∗(n, p2ni)/E(ni)→ R(n, pnj)/

E(nj) for some j is defined via extension of ideals of the corresponding Clifford al-

gebras in Lemmas 7.1 and 7.2. It provides us with Ip2A−1 ∈ Λ4DpΛ4/Λ4 such that

Ip2A−1 divides Ψp2A−1 from the left and, therefore, is an injection by Theorem 7.5



76

and Remark 7.6. The last step in the chain (7.10) is the bijection M 7→ pM−1 ,

R(n, pnj)/E(nj)→ E(nj)\R(nj , pn) . As a composition of injections, Υ is certainly

an injection itself. Moreover, since Ip2A−1 divides p2(ΨA)−1 from the left, then

ΥA = p(Ip2A−1)−1 divides ΨA from the right.

From the above theorem it easily follows that we can view the set of classes

of quaternary automorphs of n as a 2-fold covering of the set of classes of ternary

automorphs of q :

Corollary 7.8. With the notation and under the assumptions of Theorem 7.7,

H⋃
j=1

E(nj)\R(nj , pn) =

⋃
A∈∪hi=1E(qi)\R∗(qi,p2q)

{ M ∈ ∪jE(nj)\R(nj , pn) ; ΨAM−1 ∈ Z4
4} , (7.11)

where for a fixed A the set {M ∈ ∪jE(nj)\R(nj , pn) ; ΨAM−1 ∈ Z4
4} consists of

exactly 2 classes, and the union over A is disjoint.

Proof. By Remark 7.6, for each M ∈ ∪jE(nj)\R(nj , pn) there exists a unique

A ∈ ∪iE(qi)\R∗(qi, p2q) such that (pM)−1 divides Ψp2A−1 from the left, which

immediately implies thatM divides ΨA = p2(Ψp2A−1)−1 from the right. This estab-

lishes our claim (7.11) and shows that the cardinality of the union over A on the right

hand side of (7.11) is equal to (1 +χn(p)) · (p+ 1) , see formulas (7.3),(7.4) and (7.5).

On the other hand, because of (7.6) and (7.7) we see that this cardinality can be

attained only if the union over A in (7.11) is disjoint (recall that in the proof of The-

orem 7.5 we already established that rankFp ΨA = 1 and so the number of elements

in the set {M ∈ ∪jE(nj)\R(nj , pn) ; ΨAM−1 ∈ Z4
4} is equal to 1 + χn(p) = 2 by

(7.4)).

In other words, Corollary 7.8 states that each class in ∪jE(nj)\R(nj , pn) is a

right divisor of a unique class in Ψ
(
∪iE(qi)\R∗(qi, p2q)

)
. And conversely, each

class in the image Ψ
(
∪iE(qi)\R∗(qi, p2q)

)
is divisible from the right by exactly

(1 + χn(p)) = 2 classes of automorphs in ∪jE(nj)\R(nj , pn) .
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Concluding remarks

Automorph class lift and its factorizations studied in preceding sections shed a new

light on the relationships between representations of integers by ternary and quater-

nary quadratic forms. In the particular case of positive definite ternary forms, from

the construction we can deduce certain relations involving the corresponding theta-

series similar to Shimura’s lift as defined by P.Ponomarev in [10]. Still the theory is

far from being complete, and I would like to discuss some open questions.

First of all it is necessary to address the issue of singular primes, i.e. those p that

divide the determinant det q . As we already noted in Corollary 7.4, the isotropic sums

of types (7.3) and (7.6) have not been computed in the case of such primes. This

prevents us from stating a stronger versions of Theorem 7.3 and Corollary 7.4 which

would satisfactorily resolve the question of whether or not Shimura’s lift of Θ{q}(z)

is always equal to a normalized Θ{n}(z). Exact formulas for singular isotropic sums

would also have other important applications, such as a complete Euler product

decomposition of general Eichler and Epstein zeta-functions as well as investigation

of their analytical properties (see [2]).

Another unclear issue concerning singular primes is proper construction of the

automorph class lift (6.28) Ψ : ∪iE(qi)\R∗(qi, p2q) ↪→ ∪jE(nj)\R∗(nj , p2n) for

such p and its further factorization into a product of quaternary automorphs with

prime multipliers (similar to Lemmas 7.1 and 7.2). All our proofs use the primality of

p to det q and it would be very interesting to see to what extent the same construction

works in the singular case and what modifications (if any) should be made.

The next interesting possibility is related to investigation of effects of the au-

tomorph class lift on individual quadratic forms. (In the case of positive definite

quadratic forms, this could lead to correspondences between certain spaces of mod-

ular forms spanned by theta-series of different weights and invariant under Hecke

77
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operators.) For this, we need to explicitly describe factorizations of an individual im-

age Ψ
(
E(qi)\R∗(qi, p2q)

)
into products of quaternary automorphs with multiplier

p . (Recall that we provided such a description only in the case of the entire image

Ψ
(
∪iE(qi)\R∗(qi, p2q)

)
which corresponds to Shimura’s lift of the generic theta-

series Θ{q}(z) ). Inspired by results of P.Ponomarev [10], here is a sketch of what one

might expect.

The subspace of modular forms of half-integral weight 3/2 spanned by h theta-

series of ternary quadratic forms (5.2) is invariant under the Hecke operators |3
2
T (p2)

and its eigenmatrix with respect to Θ(z,qi)/e(qi) , 1 ≤ i ≤ h is the matrix t∗q(p2)

given by (3.6). Let Fi(z) denote Shimura’s lift Θ(a)(z,qi) for some fixed a and

let Fq(z) = t (. . . , Fi(z), . . .) be the associated vector-valued modular form of integral

weight 2. Then we expect the space spanned by Fi(z), 1 ≤ i ≤ h to be invariant under

Hecke operators |2 T (p), and its eigenmatrix with respect to Fi’s to be given again

by t∗q(p2). Furthermore, let Θn(z) = t
(
. . . ,Θ(z,nj)/e(nj), . . .

)
be the the vector-

valued theta-series of weight 2 associated with a complete system {n1, . . . ,nH} of

quaternary quadratic forms representing different equivalent classes of the similarity

class of quadratic form determined by the norm on the even subalgebra of Clifford

algebra C(Z3,qi) for some i . (We note again that we can take ni to be the norm

on C0(Z3,qi), 1 ≤ i ≤ h and so h ≤ H, see Lemmas 6.4 and 6.5). We expect the

space spanned by Shimura’s lifts of Θ(z,qi), 1 ≤ i ≤ h to be a subspace of the

space spanned by the normalized theta-series Θ(z,nj)/e(nj), 1 ≤ j ≤ H , which is

invariant under Hecke operators |2 T (p) . In other words, we hope that there exists a

matrix X ∈ QhH (of arithmetical nature) such that Fq(z) = X · Θn(z) . This would

imply that

t∗q(p2) ·XΘn(z) = Fq(z) |2 T (p) = XΘn(z) |2 T (p) = (1 + χn(p))−1X t∗n(p) ·Θn(z)

Building up expectations, we may hope that t∗q(p2) ·X = (1 + χn(p))−1X · t∗n(p) for

some arithmetical matrix X ∈ QhH , in other words

(
|E(qi)\R∗(qi, p2qj)|

)
h×h ·X = (1+χn(p))−1X ·

(
|E(nk)\R∗(nk, pnl)|

)
H×H (8.1)
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The existence of such an X is not totally impossible: using Theorem 7.3, we may

take, for instance, h = 1 and X = (
∑
j r(nj , 1)/e(nj))

−1 · (1, . . . , 1) , the particular

scalar multiple is chosen in order to make the first Fourier coefficient of X · Θn(z)

equal to 1. Another, rather trivial example of matrix X with property (8.1) is

X =


e−1(q1) . . . e−1(q1)

...
...

e−1(qh) . . . e−1(qh)


h×H

,

for which we have t∗q(p2) · X = (p + 1) · X = (1 + χn(p))−1X · t∗n(p) by Theorem

7.3. Both examples produce the generic theta-series Θ{n}(z) as a Hecke eigenform

of weight 2 whose eigenvalue is equal to t∗q(p2) . It would be extremely interesting to

find nontrivial (of rank > 1) examples of matrices with property (8.1), which could

lead to construction of other subspaces invariant under Hecke operators in the space

spanned by the theta-series Θ(z,nj), 1 ≤ j ≤ H with eigenmatrix t∗q(p2) . Further-

more, and perhaps more interesting, identity of type (8.1) would provide a direct link

between various zeta-functions associated to ternary and quaternary quadratic forms,

which could lead to insights concerning their analytic properties (such as meromorphic

continuation and functional equations). We illustrate this with a simple example.

If we start with q(x) = x2
1+x2

2+x2
3 (the sum of 3 squares), then the corresponding

quaternary form (6.12) on C0(E,q) is the the sum of 4 squares n(y) = y2
1+y2

2+y2
3+y2

4 .

Both forms are positive definite and both have class number equal to 1 (i.e. h = 1 and

H = 1 ), so their theta-series Θ(z,q) = e(q) · Θ{q}(z) and Θ(z,n) = e(n) · Θ{n}(z)

are eigenforms of the Hecke operators |3
2
T (p2) or |2 T (p) with respective eigenvalues

t∗3(p2) = r∗(q, p2q)/e(q) or t∗4(p) = r(n, pn)/e(n) , see (3.6). The only singular

prime dividing the determinants in our example is p = 2 . By Corollary 7.4, the

odd-numbered Fourier coefficients of Shimura’s lift of Θ(z,q) coincide with those of

the series 1
8Θ(z,n) , which we normalize with r(n,1)=8. Note that, by Theorem 7.3,

identity (8.1) is actually true in this situation with X = 1 : t∗3(p2) = 1
2 t∗4(p) for p 6= 2 .

Next we set

rk(m) =
∣∣∣∣R
(

k∑
i=1

x2
i , m

)∣∣∣∣
/ ∣∣∣∣E

(
k∑
i=1

x2
i

)∣∣∣∣ ,
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then, using (3.8) and (3.9) we obtain the following chain of identities for any square-

free positive integer a and any positive integer b :

∑
m−odd

r4(mb)

ms =
∏

p−odd

(
1− 1

2 t∗4(p)p−s + p1−2s
)−1 · r4(b) =

∏
p−odd

(
1− t∗3(p2)p−s + p1−2s

)−1 · r4(b) =

∑
m−odd

χq(m)(2a
m )

ms ·
∏

p−odd

(
1− χq(p)

(2a

p

)
p−s

)
·

∏
p−odd

(
1− t∗3(p2)p−s + p1−2s

)−1 · r4(b) =

L
(
s , (
−a
·

)
)
·

∑
m−odd

r3(m2a)

ms · r4(b)

r3(a)
.

Taking b = 1 and setting L
(
s, (−a· )

)
= La(s) , where (−a· ) is the Legendre symbol,

we conclude that

∑
m−odd

r3(m2a)

ms = L−1
a (s) ·

∑
m−odd

r4(m)

ms · r3(a) . (8.2)

The particular zeta-function on the left-hand side of (8.2) has Euler product (3.9) and

is associated to the theta-series Θ(z, x2
1 +x2

2 +x2
3) of half-integral weight. Now we can

also deduce analytic properties (meromorphic continuation and functional equation)

of this zeta-function from known properties of the Epstein zeta-function and of the

L-series on the right-hand side of (8.2).

Finally, we can try to interpret (and generalize) of identity (8.1) in terms of the

automorph class theory which would provide a direct link between T∗q(p2) and T∗n(p) ,

see (4.1), i.e., between individual classes of ternary automorphs E(qi)\R∗(qi, p2qj)

and quaternary automorphs E(nk)\R∗(nk, pnl) with fixed i, j, k, l , for an arbitrary

integral nonsingular ternary quadratic form q . Automatically, this would also fur-

nish a natural proof for the above conjectures on relations between numbers of rep-

resentations and, as a consequence, between corresponding Eichler or Epstein zeta-

functions. Such an interpretation seems to require a better understanding of the
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arithmetic of even Clifford subalgebras C0(E,q) in order to characterize explicitly

factorizations of individual lifts ΨA ⊂ E(ni)\R∗(ni, p2nj) in terms of automorph

classes in E(nk)\R∗(nk, pnl) for specific k and l . To this day attempts to find such

an interpretation have been unsuccessful.

Finally, we mention the most intriguing mystery concerning Shimura’s lift for

theta-series – the question of theta-series of quadratic forms in more than 3 variables.

The apparatus of Clifford algebras extensively used in the present paper seems to be

of no use in that situation since on one hand dimensions of corresponding algebras

do not match the expected weights of the lifting and on the other hand the standard

norm on an even Clifford subalgebra of dimension greater than 4 does not define a

quadratic form in general. To the author’s knowledge there is no result describing

effects of Shimura’s lift on such theta-series. The mountain is still in clouds!
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[10] P. Ponomarev. Ternary Quadratic Forms and Shimura’s correspondence. Nagoya
Math. J. 81 (1981), 123–151.

[11] G. Shimura. Introduction to the Arithmetical Theory of Automorphic Functions.
Iwanami Publishers and Princeton University Press, Tokyo–Princeton, N.J.,
1971.

[12] — . On modular forms of half integral weight. Ann. of Math. 97 (1973), 440–481.

82


