HOMEWORK 4: APPLICATIONS OF $H^*(K(\pi, n))$

- (1) Sketch a proof of Cartan's result that $H^*(K(\mathbb{Z}/p, n); \mathbb{F}_p)$ is the free commutative algebra on classes $\mathcal{P}^I(\iota_n)$, where e(I) < n, and classes $\mathcal{P}^I(\iota_n)$, where e(I) = n and $\mathcal{P}^I(\iota_n)$ realizes the p^{th} Massey power of an exterior class.
- (2) Using Postnikov sections, compute the first 9 stable homotopy groups of spheres at p = 3. Determine the two possibilities for what could happen at the next stage.
- (3) (a) Using Postnikov sections, show that the first *p*-torsion in $\pi_*^s(S^0)$ is a \mathbb{Z}/p and occurs in degree 2p-3.
 - (b) Show more generally that this is true for the first *p*-torsion in the unstable homotopy groups: we first see *p*-torsion in $\pi_*(S^k)$ degree (2p-3)+k.
- (4) Using Postnikov sections and results of Serre and Cartan, compute the first 4 homotopy groups of S^3 .
- (5) Mirror the arguments given for spheres and compute the first few homotopy groups of $\mathbb{C}P^2$. In general, unstable homotopy groups are very difficult to compute. This method is a very useful one for finding them!
- (6) Let M = Sp(5)/SU(5). Using the Serre spectral sequence, show that the rational cohomology of M (which is a 31-dimensional manifold) has two non-trivial Massey products. Conclude that

$$M \not\simeq_{\mathbb{Q}} (S^6 \times S^{25}) \# (S^{10} \times S^{21}).$$

You may assume that the map

 $\mathbb{Q}[x_3, x_7, x_{11}, x_{15}, x_{19}] = H^*(Sp(5)) \to H^*(SU(5)) = \mathbb{Q}[x_3, x_5, x_7, x_9]$

sends x_3 and x_7 to the classes of the same name.