PROBLEMS, MATH 215A

Do 28 problems, due Friday Dec 2.
All rings are commutative.

1. Prove that if x is invertible in a ring A and $y \in A$ is nilpotent, then $x+y \in A^{\times}$.
2. Let $f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in A[X]$ be a polynomial. Prove that $f \in A[X]^{\times}$if and only if $a_{0} \in A^{\times}$and a_{i} are nilpotent for all $i \geq 1$.
3. Prove that for every nonzero ring A, the $\operatorname{set} \operatorname{Spec}(A)$ has a minimal element with respect to inclusion.
4. Let $f: A \rightarrow B$ be a ring homomorphism, $\mathfrak{b} \subset B$ an ideal. Prove that the closure of $f^{*}(V(\mathfrak{b}))$ in $\operatorname{Spec}(A)$ coincides with $V\left(\mathfrak{b}^{c}\right)$.
5. Let M and M be finitely generated modules over a local ring A. Prove that is $M \otimes_{A} N=0$, then $M=0$ or $N=0$.
6. Prove that if B is a flat A-algebra and N is a flat B-module, then N is a flat A-module.
7. Prove that every module is a colimit of free modules.
8. Prove that if $A^{n} \rightarrow A^{m}$ is a surjective A-module homomorphism, then $n \geq m$.
9^{*}. Prove that if $A^{n} \rightarrow A^{m}$ is an injective A-module homomorphism, then $n \leq m$.
9. Let $0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0$ be an exact sequence of modules over A and P is flat A-module, then for every module X, the sequence $0 \rightarrow M \otimes_{A} X \rightarrow$ $N \otimes_{A} X \rightarrow P \otimes_{A} X \rightarrow 0$ is exact.
10. Let $f: M \rightarrow M$ be a surjective endomorphism of a finitely generated A-module. Prove that $f^{n}+a_{1} f^{n-1}+\cdots+a_{1} f+a_{n}=0$ for some n and $a_{1}, \ldots, a_{n} \in A$ with $a_{n} \neq 0$.
12^{*}. Let $f: M \rightarrow M$ be a surjective endomorphism of a finitely generated A-module. Prove that f is an isomorphism.
11. Let M be an A-module and $\mathfrak{a} \subset A$ an ideal. Suppose $M_{\mathfrak{m}}=0$ for every maximal ideal \mathfrak{m} containing \mathfrak{a}. Prove that $M=\mathfrak{a} M$.
12. Let $A \rightarrow B \rightarrow C$ be ring homomorphisms. Prove that if C is flat over A and C is faithfully flat over B, then B is flat over A.
13. Let M be a finitely presented A-module. Prove that for every surjective homomorphism $f: X \rightarrow M$ with finitely generated X, the kernel of f is also finitely generated.
14. Prove that the functor lim is left-exact. Precisely, let $0 \rightarrow M \rightarrow N \rightarrow P$ be an exact sequence of functors $I \rightarrow A-M o d$, i.e., for every i in I the
sequence of A-modules $0 \rightarrow M_{i} \rightarrow N_{i} \rightarrow P_{i}$ is exact. Show that the sequence $0 \rightarrow \lim M \rightarrow \lim N \rightarrow \lim P$ is exact. Prove the functor colim is right-exact.
15. A nonempty category I is called filtered if for every two objects i and i^{\prime} there are morphisms $i \rightarrow j$ and $i^{\prime} \rightarrow j$ for some object j and for every two morphisms $f: i \rightarrow j$ and $f^{\prime}: i \rightarrow j^{\prime}$, there exist morphisms $g: j \rightarrow k$ and $g^{\prime}: j^{\prime} \rightarrow k$ for some object k such that $g f=g^{\prime} f^{\prime}$. Prove that the colimit over a filtered category is an exact functor.
16. Let M be an A-module and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A^{n}$ be a unimodular row. Suppose we are given elements $m_{i} \in M_{a_{i}}$ for every i such that for every i and j, the images of m_{i} and m_{j} in $M_{a_{i} a_{j}}$ coincide. Prove that there is a unique element $m \in M$ such that the image of m in $M_{a_{i}}$ is equal to m_{i} for every i.
17. Let M and N be A-modules and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A^{n}$ be a unimodular row. Suppose we are given $A_{a_{i}}$-module homomorphisms $\varphi_{i}: M_{a_{i}} \rightarrow$ $N_{a_{i}}$ for every i such that for every i and j, the images of φ_{i} and φ_{j} in $\operatorname{Hom}_{A_{a_{i} a_{j}}}\left(M_{a_{i} a_{j}}, N_{a_{i} a_{j}}\right)$ coincide. Prove that there is a unique homomorphism of A-modules $\varphi: M \rightarrow N$ such that the image of φ in $\operatorname{Hom}_{A_{a_{i}}}\left(M_{a_{i}}, N_{a_{i}}\right)$ is equal to φ_{i} for every i.
18. Let P be a finitely generated projective A-module. Prove that there is a Noetherian subring A_{0} of A and a projective A_{0}-module P_{0} such that $P \simeq P_{0} \otimes_{A_{0}} A$.
21^{*}. Let P and Q be A-modules such that $P \otimes_{A} Q \simeq A$. Prove that P and Q are finitely generated projective modules of constant rank 1 .
19. Let M be an A-module. The exterior n-th power $\Lambda^{n}(M)$ of M is the factor module of the tensor product of n copies of M by the submodule generated by the tensors $m_{1} \otimes m_{2} \otimes \cdots \otimes m_{n}$ such that $m_{i}=m_{j}$ for some $i \neq j$. Prove that is P is a projective A-module of constant rank n, then $\Lambda^{n}(M)$ is a projective module of constant rank 1.
20. Let P and Q be two projective modules of constant rank 1. Prove that if P and Q are stably isomorphic, then $P \simeq Q$.
21. Let \mathfrak{a} and \mathfrak{b} be two ideals of a ring A such that $\operatorname{Spec}(A)$ is the disjoint union of the closed sets $V(\mathfrak{a})$ and $V(\mathfrak{b})$. Prove that there is an idempotent $e \in A$ such that $V(\mathfrak{a})=V(A e)$ and $V(\mathfrak{b})=V(A(1-e))$.
22. Prove that for every $n>0$, there is a ring A_{n} and a unimodular n-row a over A_{n} such that for every ring B and a unimodular n-row b over B there exists a ring homomorphism $f: A_{n} \rightarrow B$ with $f(a)=b$.
23. Let $x, y \in A$ be two elements generating the unit ideal and $\varphi \in$ $G L_{n}\left(A_{x y}\right)$. Prove that the A-module

$$
P_{\varphi}:=\left\{(u, v) \in A_{x} \oplus A_{y} \quad \text { such that } \quad \varphi\left(u_{y}\right)=v_{x} \quad \text { in } \quad A_{x y}^{n}\right\}
$$

is projective with $P_{x} \simeq A_{x}^{n}$ and $P_{y} \simeq A_{y}^{n}$.
27^{*}. Let $n \geq m$ be positive integers. Prove that there exists a ring $A_{n, m}$ and a projective $A_{n, m}$-module $P_{n, m}$ of constant rank m generated by n elements such for every ring A and every projective A-module P of constant rank m
generated by n elements, there is a ring homomorphism $f: A_{n, m} \rightarrow A$ with $P \simeq P_{n, m} \otimes_{A_{n, m}} A$.
28. Let P be a finitely generated projective A-module. Prove that A is the product $A_{1} \times A_{2} \times \cdots \times A_{n}$ of rings and $P=P_{1} \times P_{2} \times \cdots \times P_{n}$, where P_{i} is finitely generated projective A_{i}-module of constant rank for every i.
29. Let P be an A-module and $n \geq 0$ an integer. Prove that TFAE:
(a) P is a finitely generated projective A-module of constant rank n;
(b) P is finitely generated and $P_{\mathfrak{m}}$ is free of rank n for all $\mathfrak{m} \in \operatorname{Max}(A)$;
(c) P is finitely generated and $P_{\mathfrak{p}}$ is free of rank n for all $\mathfrak{p} \in \operatorname{Spec}(A)$;
(d) There is a unimodular row $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $P_{a_{i}}$ is a free $A_{a_{i}}-$ module of rank n for all i.
30. Let P be a finitely generated projective A-module of constant rank 1 . Prove that $\operatorname{End}_{A}(P) \simeq A$.
31. Let P be a finitely generated projective A-module. Prove that P is faithfully flat if and only if $a P \neq 0$ for every $0 \neq a \in A$.
32. Let $A=A_{0} \oplus A_{1} \oplus \ldots$ be a graded commutative ring. Prove that A is Noetherian if and only if A_{0} is Noetherian and the A_{0}-algebra A is finitely generated.
33. Let R be a local ring, $f \in R\left[t_{1}, \ldots, t_{n}\right]$ a polynomial. Suppose that one of the coefficients of f is invertible in R. Prove that f is a non-zero-divisor in $R\left[t_{1}, \ldots, t_{n}\right]$.
34. Let R be a complete Noetherian local ring with maximal ideal P. Suppose there is a subfield $K \subset R$ mapping isomorphically onto R / P. Let x_{1}, \ldots, x_{d} be a system of parameters of R. Prove that R is a finitely generated module over the subring $K\left[\left[x_{1}, \ldots, x_{d}\right]\right]$.
35. Let f and g be functions $\{0,1,2, \ldots\} \rightarrow \mathbb{Z}$ such that $f(n+1)-f(n)=$ $g(n)$ for all $n \geq 0$. Prove that if g is a polynomial of degree d then f is a polynomial of degree $d+1$.
36. Let R be a Noetherian local ring with maximal ideal P and $x \in P$. Prove that

$$
\operatorname{dim} R \geq \operatorname{dim}(R / x R) \geq \operatorname{dim} R-1
$$

37. Let R be a Noetherian local ring with maximal ideal P and $a_{1}, a_{2}, \ldots, a_{k} \in$ P. Prove that $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is a part of a system of parameters if and only if $\operatorname{dim}\left(R /\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle\right)=\operatorname{dim} R-k$.
38. Let $R \rightarrow S$ be a flat local homomorphism of Noetherian local rings, P the maximal ideal of R. Prove that is R and $S / P S$ are regular then so is S.
