PROBLEMS, MATH 214B

1. Let \mathcal{F} be a presheaf on X. Denote by $\operatorname{Tot}(\mathcal{F})$ the disjoint union of the stalks \mathcal{F}_{x} for all $x \in X$ and by $p: \operatorname{Tot}(\mathcal{F}) \rightarrow X$ the natural projection. Any section $a \in \mathcal{F}(U)$ over an open subset $U \subset X$ and every point $x \in X$ define an element $a_{x} \in \mathcal{F}_{x}$ which then can be viewed as an element of $\operatorname{Tot}(\mathcal{F})$ with $p\left(a_{x}\right)=x$. Define topology on $\operatorname{Tot}(\mathcal{F})$ with the basis given by the subsets $\left\{a_{x}, x \in U\right\} \subset \operatorname{Tot}(\mathcal{F})$ for all open $U \subset X$ and all sections $a \in \mathcal{F}(U)$. A section of p over an open set $U \subset X$ is a continuous map $s: U \rightarrow \operatorname{Tot}(\mathcal{F})$ such that $p(s(x))=x$ for every $x \in U$. Denote by $\widetilde{\mathcal{F}}$ the sheaf of sections of p. The sheaf $\widetilde{\mathcal{F}}$ is called the sheaf associated to the presheaf \mathcal{F}.
a) Prove that there is a natural morphism of presheaves $i: \mathcal{F} \rightarrow \widetilde{\mathcal{F}}$.
b) Prove that \mathcal{F} is a sheaf iff i is an isomorphism.
c) Prove that for every morphism $j: \mathcal{F} \rightarrow \mathcal{G}$ to a sheaf \mathcal{G} there exists a unique morphism $\tilde{j}: \widetilde{\mathcal{F}} \rightarrow \mathcal{G}$ such that $\tilde{j} \circ i=j$.
2. Let A be a set, X a topological space. Let \mathcal{F} be the constant presheaf associated with A. Consider the presheaf \mathcal{G} with $\mathcal{G}(U)$ being the set of continuous maps $U \rightarrow A$ (we view A as a discrete topological space).
a) Prove that \mathcal{G} is a sheaf.
b) Prove that the natural morphism $i: \mathcal{F} \rightarrow \mathcal{G}$ is isomorphic to $i: \mathcal{F} \rightarrow \widetilde{\mathcal{F}}$ considered in 1a).
3. Describe Spec $\mathbb{Z}[X]$.
4. Describe $(\operatorname{Spec} \mathbb{C}) \times_{\text {Spec } \mathbb{R}}(\operatorname{Spec} \mathbb{C})$.
5. Find an example of a commutative ring A that is not Noetherian with Noetherian topological space $\operatorname{Spec} A$.
6. Prove that $\operatorname{Spec} A$ is not connected if and only if A has a nontrivial idempotent (an element $a \neq 0,1$ such that $a^{2}=a$).
7. Let A be a commutative ring, $f \in A$. Prove that the set $\{P \in \operatorname{Spec} A$ such that $f(P)=0\}$ is closed in $\operatorname{Spec} A$.
8. Give an example of a commutative ring A and an open set $U \subset \operatorname{Spec} A$ that is not principal.
9. Prove that the functor Rings $^{o p} \rightarrow$ TopSpaces, $A \mapsto \operatorname{Spec} A$ is neither full nor faithful.
10. Let X be a scheme, $f \in \mathcal{O}_{X}(X)$.
a) Prove that the set $X_{f}=\{x \in X$ such that $f(x) \neq 0\}$ is open in U.
b) Prove that the restriction of $f \in \mathcal{O}_{X}(X)$ on the set X_{f} is invertible.
c) Let $x \in X, P_{x}=\left\{f \in \mathcal{O}_{X}(X)\right.$ such that $\left.f(x)=0\right\}$. Show that P_{x} is a prime ideal in $A=\mathcal{O}_{X}(X)$ and the map $\theta: X \rightarrow \operatorname{Spec} A, x \mapsto P_{x}$ is continuous.
d) Prove that $\theta^{-1}(D(f))=X_{f}$.
e) Show that the map θ gives rise to a morphism of schemes $X \rightarrow \operatorname{Spec} A$.
11. Let X be a quasi-projective variety such that the scheme \widetilde{X} is affine. Prove that the variety X is affine.
12. Let X be a discrete topological space, k a field. For every subset $U \subset X$ let $\mathcal{F}(U)$ be the ring of all maps $U \rightarrow k$. Prove that \mathcal{F} is a sheaf of rings with respect to obvious restriction maps and the ringed space (X, \mathcal{F}) is a scheme. For which X is this scheme affine?
13. Let K be the rational function field over a field k in infinitely many variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ For every $i \geq 1$, let v_{i} be the X_{i}-adic discrete valuation on K, that is $v_{i}(f)=n$ for a nonzero function $f \in K$ if f can be written in the form $f=\left(X_{i}\right)^{n} \cdot \frac{g}{h}$ with polynomials g and h not divisible by X_{i}. For every nonzero function $f \in K$ we assign a sequence of integers $a(f)=$ $\left(a_{1}, a_{2}, \ldots\right)$ as follows. Let $a_{1}=v_{1}(f), f_{2}=\left(f / X_{1}^{a_{1}}\right)_{X_{1}=0}$. Set $a_{2}=v_{2}\left(f_{2}\right)$, $f_{3}=\left(f_{2} / X_{2}^{a_{2}}\right)_{X_{2}=0}$ and $a_{3}=v_{3}\left(f_{3}\right)$ and so on.
a) We order the set of sequences $a=\left(a_{1}, a_{2}, \ldots\right)$ lexicographically, i.e., $a \geq b$ if for the smallest index k such that $a_{k} \neq b_{k}$ we have $a_{k} \geq b_{k}$. Prove that the set

$$
A=\{0\} \cup\{f \in K \backslash\{0\} \text { such that } a(f) \geq 0\}
$$

is a local ring with the maximal ideal Q generated by all the X_{i}.
b)

For every $i \geq 1$, let P_{i} be the union of $\{0\}$ and the set of all nonzero $f \in A$ such that $a(f)>\left(0, \ldots, 0, b_{i+1}, b_{i+2}, \ldots\right)$ for all b_{i+1}, b_{i+2}, \ldots Prove that P_{i} is a prime ideal in A and

$$
P_{1} \subset P_{2} \subset \cdots \subset P_{n} \subset \cdots \subset Q
$$

c) Prove that

$$
\operatorname{Spec} A=\left\{0, Q, P_{1}, P_{2}, \ldots, P_{n}, \ldots\right\}
$$

and describe the Zariski topology on Spec A.
d) Prove that the scheme $\operatorname{Spec} A \backslash\{Q\}$ has no closed points.
14. Let $f: X \rightarrow Y$ be a morphism of schemes, $U \subset Y$ an open subset. Assume that $f(X) \subset U$. Prove that f factors as the composition of a morphism of schemes $X \rightarrow U$ and the inclusion $U \hookrightarrow Y$.
15. Let X be a scheme. Consider the presheaf \mathcal{F} of rings on the topological space X defined by

$$
\mathcal{F}(U)=\mathcal{O}_{X}(U) / \operatorname{Nil}\left(\mathcal{O}_{X}(U)\right)
$$

for every open $U \subset X$. Let $\mathcal{O}_{X}^{\text {red }}$ be the sheaf of rings associated to the presheaf \mathcal{F} (see Ex. 1).
a) Prove that $X^{\text {red }}:=\left(X, \mathcal{O}_{X}^{\text {red }}\right)$ is a reduced scheme.
b) Construct a canonical morphism of schemes $i: X^{\text {red }} \rightarrow X$.
c) Prove that every morphism of schemes $Y \rightarrow X$ with Y reduced factors into the composition of a morphism $Y \rightarrow X^{\text {red }}$ with i.
16. Let X be a scheme and let $f: X \rightarrow$ Spec \mathbb{Z} be the canonical morphism. Prove that for every $x \in X, f(x)=p \mathbb{Z}$, where p is the characteristic of the residue field $k(x)$.
17. Prove that any two quasi-projective varieties X and Y over F there is a natural isomorphism of schemes $\widetilde{Z} \simeq \widetilde{X} \times_{\text {Spec } F} \widetilde{Y}$, where $Z=X \times Y$.
18. Let $f: Y \rightarrow X$ be a closed embedding. Prove that $\operatorname{Ker}\left(\mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{Y}\right)$ is a quasi-coherent sheaf of ideals in \mathcal{O}_{X}. Conversely, given a quasi-coherent sheaf of ideals $I \subset \mathcal{O}_{X}$, there is a closed embedding $f: Y \rightarrow X$ such that $\operatorname{Ker}\left(\mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{Y}\right)=I$.
19. Let V be a finite dimensional vector space over a field K. Prove that every section of the tautological line bundle over $\mathbb{P}_{k}(V)$ is trivial.
20. Let k be a field. The projective line \mathbb{P}_{k}^{1} is covered by two open sets U_{1} and U_{2}, both isomorphic to \mathbb{A}_{k}^{1}, in a standard way. The intersection $U_{1} \cap U_{2}$ is Spec $k\left[t, t^{-1}\right]$. Let $\alpha \in \mathrm{GL}_{n}\left(k\left[t, t^{-1}\right]\right)$ for some n. Write E_{α} for the vector bundle over \mathbb{P}_{k}^{1} which is obtained by gluing the trivial rank n vector bundles over U_{1} and U_{2} along the isomorphism over $U_{1} \cap U_{2}$ given by the matrix α. Prove that $E_{\alpha} \simeq E_{\alpha^{\prime}}$ if and only if there are $\beta \in k[t]$ and $\gamma \in k\left[t^{-1}\right]$ such that $\alpha^{\prime}=\beta \alpha \gamma$.
21. Prove that every vector bundle over \mathbb{P}_{k}^{1}, k a field, is isomorphic to a direct sum of tensor powers of the tautological line bundle.
22. Classify vector bundles over the affine line with doubled origin.
23. Let $\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{n}$ be line bundles over a scheme X. Prove that

$$
\Lambda^{n}\left(\mathcal{L}_{1} \oplus \mathcal{L}_{2} \oplus \cdots \oplus \mathcal{L}_{n}\right) \simeq \mathcal{L}_{1} \otimes \mathcal{L}_{2} \otimes \ldots \otimes \mathcal{L}_{n}
$$

24. Let \mathcal{L}_{1} and \mathcal{L}_{2} be line bundles over a scheme X such that $\mathcal{L}_{1} \oplus \mathbb{A}_{X}^{1} \simeq$ $\mathcal{L}_{2} \oplus \mathbb{A}_{X}^{1}$. Prove that $\mathcal{L}_{1} \simeq \mathcal{L}_{2}$.
25. Let $E \rightarrow X$ be a vector bundle, $s: X \rightarrow E$ a section. Show that s is a closed embedding.
26. Let $L \rightarrow X$ be a line bundle, $z: X \rightarrow L$ the zero section. Prove that the bundle is trivial if and only if there is a section $s: X \rightarrow L$ such that $s(X) \cap z(X)=\emptyset$.
27. Let E and E^{\prime} be two vector bundles over X. Prove that there is a scheme $I=\operatorname{Iso}\left(E^{\prime}, E\right)$ over X such that the set of points of I over a point $x: \operatorname{Spec}(R) \rightarrow X$ is the set of isomorphisms between $x^{*}\left(E^{\prime}\right)$ and $x^{*}(E)$.
28. Let E^{\prime} be a sub-bundle of a vector bundle E over X. Prove that there is a scheme $f: Y \rightarrow X$ such that the set of points of Y over a point $x: \operatorname{Spec}(R) \rightarrow X$ is the set of morphisms $x^{*}(E) \rightarrow x^{*}\left(E^{\prime}\right)$ that are identity on $x^{*}\left(E^{\prime}\right)$. Prove that Y is an affine bundle. Prove that $f^{*}\left(E^{\prime}\right)$ is a direct summand of $f^{*}(E)$.
29. Let $f: E \rightarrow E^{\prime}$ be a (G-equivariant) morphism of G-torsors over X. Show that f is an isomorphism.
30. Prove that a G-torsor $f: E \rightarrow X$ is trivial if and only if f has a section.
31. Let $L \rightarrow X$ be a line bundle and $z: X \rightarrow L$ the zero section. Prove that $L \backslash z(X) \rightarrow X$ is a \mathbb{G}_{m}-torsor.
32. Prove that every \mathbb{G}_{m}-torsor is isomorphic to $L \backslash z(X) \rightarrow X$, where $L \rightarrow X$ be a line bundle and $z: X \rightarrow L$ is the zero section.
33. Let $0 \rightarrow E \rightarrow F \stackrel{f}{\rightarrow} \mathbb{A}_{X}^{1} \rightarrow 0$ be an exact sequence of vector bundles over a scheme X (here \mathbb{A}_{X}^{1} is the trivial line bundle over X). Let $S: X \rightarrow \mathbb{A}_{X}^{1}$ be the section sending every x to 1 . Prove that $f^{-1}(s(X))$ is an E-torsor.
34. Let $T=f^{-1}(s(X))$ is the E-torsor as in Problem 33. Show that T is a trivial torsor if and only if the sequence $0 \rightarrow E \rightarrow F \xrightarrow{f} \mathbb{A}_{X}^{1} \rightarrow 0$ is split.
35. Let E be a vector bundle over X and N an E-torsor. Show that N is isomorphic to $f^{-1}(s(X))$ for an exact sequence as in Problem 33.
36. Let A be a central simple algebra over a field k of degree n. Prove that the functor X taking a commutative ring R to the set of R-algebra isomorphisms between $A \otimes_{k} R$ and the matrix algebra $M_{n}(R)$ is a scheme over k. Show that X is PGL_{n}-torsor.
37. Let $S B(A)$ be the Severi-Brauer variety of a central simple k-algebra A. Construct a closed embedding $S B(A) \times_{k} S B\left(A^{\prime}\right) \rightarrow S B\left(A \otimes_{k} A^{\prime}\right)$.
38. Let $X=\operatorname{Spec} k[x, y] /(x y)$ be the union of two affine lines. Compute $\mathrm{CH}_{0}(X)$.
39. Give an example of an integral variety X such that the map $\operatorname{Pic}(X) \rightarrow$ $\mathrm{Cl}(X)$ is not injective.
40. Let $X \rightarrow Y$ be a surjective morphism of integral varieties of the same positive dimension. If X is an affine variety, is Y necessarily affine?
