PROBLEMS, MATH 214A

Affine and quasi-affine varieties

k is an algebraically closed field

Basic notions

1. Let $X \subset \mathbb{A}^{2}$ be defined by $x^{2}+y^{2}=1$ and $x=1$. Find the ideal $I(X)$.
2. Prove that the subset in \mathbb{A}^{2} consisting of all points of the form $\left(t^{2}, t^{3}\right)$, $t \in k$ is closed.
3. Let X and X^{\prime} be subsets of \mathbb{A}^{n}. Show that $I(X) \subset I\left(X^{\prime}\right)$ if and only if $X^{\prime} \subset \bar{X}$.
4. Let S and $S^{\prime \prime}$ be subsets of $k\left[T_{1}, \ldots, T_{n}\right]$. Show that $Z(S) \subset Z\left(S^{\prime}\right)$ if and only if $S^{\prime} \subset \sqrt{\langle S\rangle}$.
5. Prove that a subset $X \subset \mathbb{A}^{n}$ is quasi-affine if and only if $X=Z_{1} \backslash Z_{2}$, where Z_{1} and Z_{2} are closed subsets of \mathbb{A}^{n}.
6. Prove that the intersection of two quasi-affine subsets is quasi-affine.
7. Let $Z=Z(x)$ and $U=\mathbb{A}^{2} \backslash Z(y)$ be respectively closed and open subsets of \mathbb{A}^{2} with the coordinates (x, y). Prove that the set $Z \cup U$ is not quasi-affine.
8. Let X be a quasi affine subset of \mathbb{A}^{n}. Prove that every closed or open subset of X is quasi-affine.
9. Prove that every quasi-affine subset of \mathbb{A}^{1} is either open or closed.
10. Give an example of a quasi-affine subset of $A^{n}, n \geq 2$ that is neither open nor closed.
11. Prove that every quasi-affine set (in particular, an open set!) is quasicompact in Zariski topology.

Regular functions and maps

12. Let $X \subset \mathbb{A}^{2}$ be defined by $x\left(y^{2}-x\right)=0$. Show that the function $f: X \rightarrow k$ defined by

$$
f(x, y)= \begin{cases}0 & \text { if } x=0 \\ y & \text { otherwise }\end{cases}
$$

is not regular. Prove that $f(x, y)^{2}$ is regular.
13. Prove that every open subset of \mathbb{A}^{1} is principal.
14. Show that the open subset $\mathbb{A}^{2} \backslash(0,0)$ is not principal in \mathbb{A}^{2}.
15. Suppose that X consists of n points. Prove that the ring $k[X]$ is isomorphic to the direct product of n copies of k.
16. Establish a bijection between an closed set X and the set of all k-algebra homomorphisms $k[X] \rightarrow k$.
17. Let $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ be given by $f(x, y)=(x y, y)$. Show that the image of f is not quasi-affine.
18. Let $f: X \rightarrow Y$ be a regular maps of quasi-affine sets and let $I \subset k[Y]$, $J \subset k[X]$ be two ideals. Prove that

$$
f^{-1}(Z(I))=Z\left(f^{*}(I)\right)
$$

and

$$
\overline{f(Z(J))}=Z\left(f^{*^{-1}}(J)\right)
$$

19. Prove that two curves X and Y given in \mathbb{A}^{2} by equations $x y=0$ and $x^{2}=x$ respectively are not isomorphic.
20. Let x be a point in \mathbb{A}^{n} and let $X=\mathbb{A}^{n} \backslash\{x\}$. Prove that if $n \geq 2$, then $k[X]=k\left[\mathbb{A}^{n}\right]$.
21. Let $f: X \rightarrow \mathbb{A}^{1}=k$ be a regular function. Prove that the image of f is either closed or open in \mathbb{A}^{1}.
22. Let X be a quasi-affine set such that $k[X]=k$. Prove that X is a one point set.
23. Let S be a subset of $k[X], X$ a closed set. Prove that the principal open sets $D(f)$, for all $f \in S$, cover X if and only if the ideal generated by S is equal to $k[X]$.
24. Let X be a point and let $Y=\mathbb{A}^{2} \backslash\{(0,0)\}$. Show that the natural map

$$
\operatorname{Mor}(X, Y) \rightarrow \operatorname{Hom}_{k-a l g}(k[Y], k[X])
$$

is not surjective. $(\operatorname{Mor}(X, Y)$ is the set of all regular maps $X \rightarrow Y$.)
25. Let X be a quasi-affine set and Y be a closed set. Prove that the natural map

$$
\operatorname{Mor}(X, Y) \rightarrow \operatorname{Hom}_{k-a l g}(k[Y], k[X])
$$

is a bijection.
26. Prove that $\mathbb{A}^{1} \backslash\{0,1\}$ and $\mathbb{A}^{1} \backslash\{a, b\}$ are isomorphic for all $a \neq b \in k$.
27. Prove that \mathbb{A}^{1} is not isomorphic to any proper quasi-affine subset of \mathbb{A}^{1}.
28. Prove that the curves $Z\left(x^{2}+y^{2}-1\right)$ and $Z(x y-1)$ in \mathbb{A}^{2} are isomorphic (assume char $k \neq 2$). Are these curves isomorphic to \mathbb{A}^{1} ?

Categories. Products and coproducts

29. Let \mathcal{A} be a category and let $X, Y \in O b(\mathcal{A})$. The product of X and Y in \mathcal{A} is an object $X \times Y$ together with two morphisms $p: X \times Y \rightarrow X$ and $q: X \times Y \rightarrow Y$ such that for every two morphisms $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ there exists a unique morphism $h: Z \rightarrow X \times Y$ with $f=p h$ and $g=q h$. Prove that the product is unique up to canonical isomorphism. Determine products in the categories of sets, rings, commutative rings, (left) modules over a ring, closed sets, quasi-affine sets.
30. Formulate the dual notion of the coproduct in a category. Determine coproducts in the categories of sets, rings, commutative rings, (left) modules over a ring, closed sets, quasi-affine sets.
31. An initial (resp. final) object of a category \mathcal{A} is an object $X \in \operatorname{Ob}(\mathcal{A})$ such that for any object $Y \in \operatorname{Ob}(\mathcal{A})$ there is a unique morphism $X \rightarrow Y$ (resp. $Y \rightarrow X$). Prove that initial and final objects are unique up to canonical isomorphism. Determine initial and final objects in the categories of sets, rings, commutative rings, (left) modules over a ring, closed sets, quasi-affine sets.
32. Prove that for quasi-affine sets X and Y, the canonical homomorphism $k[X] \otimes k[Y] \rightarrow k[X \times Y]$ is an isomorphism.

Irreducible varieties

33. Let $X_{1}, X_{2}, \ldots, X_{n}$ be the irreducible components of a Noetherian topological space X.
a) Let $U \subset X$ be an open subset. Prove that the nonempty intersections $U \cap X_{i}$ are the irreducible components of U.
b) Prove that an open subset $U \subset X$ is dense if and only if $U \cap X_{i} \neq \emptyset$ for every i.
c) Prove that every irreducible subset of X is contained in the X_{i} for some i.
d) Prove that the irreducible components of X can be defined as maximal elements in the set of all closed irreducible subsets of X.
34. Let $f: X \rightarrow Y$ be a continuous map of topological spaces and let $Z \subset X$ be an irreducible subset. Prove that $f(Z)$ is also irreducible.
35. Find irreducible components of the variety given by $x^{2}=y z, x z=x$ in \mathbb{A}^{3}.
36. Find irreducible components of the variety given by $x y=z^{3}, x z=y^{3}$ in \mathbb{A}^{3}.
37. Let X be a quasi-affine variety and let $Y \subset X$ be a closed irreducible subset. Prove that $I(Y)$ is a prime ideal in $k[X]$.
38. Show that every nonempty quasi-affine variety admits a cover by open affine dense subsets.
39. Prove that any quasi-affine variety is isomorphic to a dense open subset of an affine variety.
40. Prove that the algebra $k[X]$ for a quasi-affine variety X is isomorphic to a subalgebra of a finitely generated k-algebra.
41. Let X be an affine variety, $X=Z_{1} \cup Z_{2}$, where Z_{i} are closed and disjoint. Show that there is a function $e \in k[X]$ such that $\left.e\right|_{Z_{1}}=0$ and $\left.e\right|_{Z_{2}}=1$. Prove that $k[X]$ is isomorphic to the product $k\left[Z_{1}\right] \times k\left[Z_{2}\right]$.
42. Let X be an affine variety and let $e \in k[X]$ be a function such that $e^{2}=e$. Prove that $X=Z_{1} \cup Z_{2}$, where Z_{i} are closed, disjoint and $\left.e\right|_{Z_{1}}=0$, $\left.e\right|_{Z_{2}}=1$.
43. Prove that an quasi-affine variety X is connected if and only if the ring $k[X]$ has no idempotents other than 0 and 1.
44. Prove that a Noetherian topological space is Hausdorf if and only if it is finite with discrete topology.

Rational functions

45. Find the domain of definition of the rational function $(1-y) / x$ on the curve given by $x^{2}+y^{2}=1$ in \mathbb{A}^{2}.
46. Prove that the variety \mathbb{A}^{1} satisfies the following property: If $f \in k\left(\mathbb{A}^{1}\right)$ and $f^{2} \in k\left[\mathbb{A}^{1}\right]$, then $f \in k\left[\mathbb{A}^{1}\right]$. Does the variety $Z\left(y^{2}-x^{2}-x^{3}\right) \subset \mathbb{A}^{2}$ satisfy this property?
47. Prove the the map $\alpha: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ given by $\alpha(x, y)=(x, x y)$ is a birational isomorphism. Find the domain of definition of α^{-1}.
48. Prove that the field $k\left(x, \sqrt{1-x^{2}}\right)$ is purely transcendental over k.
49. Prove that the plane curves given by the equations $y^{2}=x^{3}$ and $y^{2}=$ $x^{3}+x^{2}$ respectively are rational varieties.
50. Let X be "sphere" given in \mathbb{A}^{n} by the equation $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$ $(n \geq 2)$. Prove that X is a rational variety.

Local ring of a subvariety

51. Let X and X^{\prime} be quasi-affine varieties and let $Y \subset X$ and $Y^{\prime} \subset X^{\prime}$ be closed irreducible subvarieties. Prove that the local rings $\mathcal{O}_{X, Y}$ and $\mathcal{O}_{X^{\prime}, Y^{\prime}}$ are isomorphic as k-algebras if and only if there are neighborhoods U and U^{\prime} of Y and Y^{\prime} in X and X^{\prime} respectively and an isomorphism $f: U \rightarrow U^{\prime}$ such that $f(U \cap Y)=U^{\prime} \cap Y^{\prime}$.
52. Let Y and Z be closed irreducible subvarieties of X such that $Y \subset Z$. Let $P \subset \mathcal{O}_{X, Y}$ be the prime ideal corresponding to Z. Prove that $\mathcal{O}_{X, Y} / P \simeq \mathcal{O}_{Z, Y}$ and $\left(\mathcal{O}_{X, Y}\right)_{P} \simeq \mathcal{O}_{X, Z}$.
53. The completion \hat{R} of a local commutative ring R with maximal ideal M is the inverse limit of the rings R / M^{i} over all $i \geq 1$. Show that \hat{R} is a local ring. Let X and Y be plane curves given by equations $x y=0$ and $x^{3}+y^{3}+x y=0$ respectively. Let $z=(0,0)$ be the origin. Prove that the local rings $\mathcal{O}_{X, z}$ and $\mathcal{O}_{Y, z}$ are not isomorphic but have isomorphic completions.

Quasi-Projective varieties

Basic notions

54. Let $I \subset k\left[S_{0}, S_{1}, \ldots, X_{n}\right]$ be an ideal. Prove that the following are equivalent:
(i) I is generated by homogeneous polynomials;
(ii) If $F_{0}+F_{1}+\cdots+F_{d} \in I$, where F_{i} is a homogeneous polynomial of degree i, then $F_{i} \in I$ for all i.
55. Let F be a homogeneous polynomial. Prove that every divisor of F is also homogeneous.
56. Let $I \subset k\left[S_{0}, S_{1}, \ldots, X_{n}\right]$ be a homogeneous ideal. Prove that the ideal \sqrt{I} is also homogeneous.

Regular functions and maps

57. Prove that the image the Veronese map is closed.
58. Is there a surjective regular map $\mathbb{A}^{1} \rightarrow \mathbb{P}^{1}$?
59. Let $x \in \mathbb{P}^{2}$. Prove that $\mathbb{P}^{2} \backslash\{x\}$ is neither projective nor quasi-affine variety.
60. Determine all regular maps $\mathbb{P}^{n} \rightarrow \mathbb{A}^{m}$.
61. Let $F \in k\left[S_{0}, S_{1}, \ldots, S_{n}\right]$ be a homogeneous polynomial of degree d and let U be the principal open set $D(F)$ in \mathbb{P}^{n}. Prove that the k-algebra $k[U]$ is canonically isomorphic to the k-algebra $k\left[S_{0}, S_{1}, \ldots, S_{n}\right]_{(F)}$ of all rational functions $\frac{G}{F^{m}}$, where G is a homogeneous polynomial of degree $m d$.
62. Prove that every regular map $f: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ is of the form $x \mapsto\left[F_{0}(x)\right.$: $\left.F_{1}(x): \cdots: F_{m}(x)\right]$, where $F_{0}, F_{1}, \ldots, F_{m} \in k\left[S_{0}, S_{1}, \ldots, S_{n}\right]$ are homogeneous polynomials of the same degree having no nontrivial common zeros. Prove that every regular map $\mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ with $m<n$ is constant.
63. Prove that a regular map $f: X \rightarrow Y$ of quasi-projective varieties is an isomorphism if and only if f is a homeomorphism and for any point $x \in X$ the induced local ring homomorphism

$$
f^{*}: \mathcal{O}_{Y, f(y)} \rightarrow \mathcal{O}_{X, x}
$$

is an isomorphism.

Rational functions and maps

64. Find the domain of definition of the regular function $f=S_{1} / S_{0}$ on \mathbb{P}^{2}.
65. Let $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be the rational map defined by $f\left(\left[S_{0}: S_{1}: S_{2}\right]\right)=$ [$S_{1} S_{2}: S_{0} S_{2}: S_{0} S_{1}$]. Find the domain of definition of f. Prove that f is a birational isomorphism and $f^{2}=\mathrm{id}$.
66. Prove that every rational map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ is regular.
67. Let $f: X \rightarrow Y$ be a rational map of quasi-projective varieties with X irreducible. Prove that there is a regular map $g: X^{\prime} \rightarrow X$ for some quasiprojective X^{\prime} such that g is a birational isomorphism and the composition $f \circ g$ is regular.

Product of quasi-projective varieties

68. Prove that $(X \times Y) \times Z \simeq X \times(Y \times Z)$.
69. Prove that $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is not isomorphic to \mathbb{P}^{n+m}.
70. Prove that $\mathbb{A}^{1} \times \mathbb{P}^{1}$ is not isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
71. Let $f: X \rightarrow S$ and $g: Y \rightarrow S$ be two regular maps. Show that the set $\{(x, y) \in X \times Y: f(x)=g(y)\}$ is a quasi-projective variety.

Proper maps

72. Prove the if $f_{1}: X_{1} \rightarrow Y_{1}$ and $f_{2}: X_{2} \rightarrow Y_{2}$ are proper maps, then $f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ is proper.
73. Prove that a morphism $f: X \rightarrow Y$ is proper if and only if f factors as $X \rightarrow Y \times \mathbb{P}^{n} \rightarrow Y$ for some n with the first map a closed embedding and the second one the projection.
74. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two regular maps. Prove that if $g \circ f$ is proper, then f is proper.
75. Prove that a map $f: X \rightarrow Y$ is proper if and only if Y can be covered by open subsets U_{i} such that $f^{-1}\left(U_{i}\right) \rightarrow U_{i}$ is proper for each i.

Dimension and Smoothness

76. Let $X \subset \mathbb{A}^{n}$ be a closed irreducible variety of dimension $n-1$. Prove that $X=Z(F)$ for an irreducible polynomial F.
77. Let $C \subset \mathbb{A}^{n+1}$ be a closed cone and $X \subset \mathbb{P}^{n}$ the corresponding variety. Prove that if X is not empty, then $\operatorname{dim}(C)=\operatorname{dim}(X)+1$.
78. Prove that $X \times Y$ is smooth if and only if X and Y are smooth.
79. Prove that if $\operatorname{char}(k) \neq 2$, then the quadric $Z\left(S_{0}^{2}+S_{1}^{2}+\cdots+S_{n}^{2}\right)$ in \mathbb{P}^{n} is smooth.
