HOMEWORK 8

1. Let $A=(a, b)$ be the quaternion algebra over a field F of characteristic different from 2. Prove that $A \simeq M_{2}(F)$ is and only if the equation $a x^{2}+b y^{2}=$ z^{2} has a nonzero solution in F.
2. Let $A_{1}=\left(a, b_{1}\right)$ and $A_{2}=\left(a, b_{2}\right)$ be two quaternion algebras over a field F of characteristic different from 2. Prove that the algebra $A_{3}=\left(a, b_{1} b_{2}\right)$ is isomorphic to a subalgebra of $A_{1} \otimes A_{2}$.
3. In the conditions of problem 2 compute the centralizer of A_{3} in $A_{1} \otimes A_{2}$. Deduce that $\left[A_{3}\right]=\left[A_{1}\right]+\left[A_{2}\right]$ in $\operatorname{Br}(F)$.
4. Prove that the endomorphism σ of the quaternion algebra $A=(a, b)$ over a field F of characteristic different from 2 given by $\sigma(x+y i+z j+t k)=$ $x-y i-z j-t k$ is an involution of A, i.e., $\sigma(u v)=\sigma(v) \sigma(u)$ for all $u, v \in A$ and $\sigma \circ \sigma=\mathrm{id}_{A}$.
5. In the setup of problem 4 prove that every element $u \in A$ is a root of the quadratic polynomial $t^{2}-(u+\sigma(u)) t+u \sigma(u)$ over F.
6. Let A be an F-algebra. Prove that A is isomorphic to the algebra $M_{n}(B)$ for some n and an F-algebra B if and only if there are elements $e_{i j} \in A$ for $i, j=1, \ldots n$ satisfying $\sum_{i} e_{i i}=1$ and $e_{i j} e_{k l}=\delta_{j k} e_{i l}$.
7. Let L / F be a field extension of degree n. Prove that L is isomorphic to an F-subalgebra of $M_{n}(F)$.
8. Let A and B be two F-algebras such that B is simple and $M_{n}(A)$ is isomorphic to a subalgebra of $M_{n}(B)$. Prove that A is isomorphic to a subalgebra of B. (Hint: consider the centralizer of $M_{n}(F)$ in $M_{n}(A)$ and in $M_{n}(B)$.)
9. Let A be a central simple F-algebra of degree n and L / F a field extension of degree $k n$ such that L is isomorphic to a subalgebra of $M_{k}(A)$. Prove that L is a splitting field of A.
10. Let A be a central division F-algebra of degree n and L / F a splitting field of degree s. Prove that n divides s and L is isomorphic to a subalgebra of $M_{s / n}(A)$.
