HOMEWORK 6

1. Let G be a finite group and C the center of G. Let $\mu: C \rightarrow F^{\times}$be a character of C. Prove that there is an irreducible representation $\rho: G \rightarrow$ GL (V) such that $\rho(c)(v)=\mu(c) v$ for all $c \in C$ and $v \in V$.
2. Let F be a field of characteristic $p>0$ and G a finite p-group. Prove that $\operatorname{rad}(F[G])=\left\{\sum a_{g} g \in F[G] \mid \sum a_{g}=0\right\}$. Determine all simple (left) $F[G]$-modules.
3. Let V be the kernel of $F^{n} \rightarrow F$ taking $\left(a_{1}, \ldots, a_{n}\right)$ to $\sum a_{i}$. The symmetric group S_{n} acts on V by permutations of the coordinates. Prove that if the characteristic of F does not divide n, then the corresponding representation is irreducible.
4. Let ρ be a representation of a finite group G and V the corresponding G-space. Show that the dual space V^{*} has the structure of a G-space via $(g \varphi)(v)=\varphi\left(g^{-1} v\right)$ for $g \in G, \varphi \in V^{*}$ and $v \in V$. Prove that $\chi_{\rho^{*}}(g)=\chi\left(g^{-1}\right)$, where ρ^{*} is the representation corresponding to the G-space V^{*}.
5. Show that ρ^{*} is irreducible if and only if so is ρ.

For all problems below the base field F is algebraically closed of characteristic zero.
6. Let G be a finite group. Define the abelian group $\operatorname{Rep}(G)$ by generators and relations as follows. The generators are the isomorphism classes $[\rho]$ of representations ρ of G. The relations are $\left[\rho \oplus \rho^{\prime}\right]=[\rho]+\left[\rho^{\prime}\right]$ for all representations ρ and ρ^{\prime}. Prove that $\operatorname{Rep}(G)$ is a free abelian group with basis the set of isomorphism classes of irreducible representations of G. Prove that the tensor product yields the structure of a commutative ring on $\operatorname{Rep}(G)$.
7. Let G be a finite group. Prove that the map $\operatorname{Rep}(G) \rightarrow C h(G)$ taking the class $[\rho]$ to the character χ_{ρ} is a well defined injective ring homomorphism. Write the multiplication table for $\operatorname{Rep}\left(S_{3}\right)$.
8. Find all groups that have exactly 2 nonisomorphic representations.
9. Find an irreducible 2-dimensional representation of the symmetric group S_{4}.
10. Let $C(g)$ be the conjugacy class of an element g in a finite group G and χ be the character of an irreducible representation ρ. Prove that if $|C(g)|$ is
relatively prime to $\operatorname{dim}(\rho)$ and $\chi(g) \neq 0$, then $\rho(g)$ is the multiplication by a scalar.

