HOMEWORK 6

- 1. Let G be a finite group and C the center of G. Let $\mu: C \to F^{\times}$ be a character of C. Prove that there is an irreducible representation $\rho: G \to GL(V)$ such that $\rho(c)(v) = \mu(c)v$ for all $c \in C$ and $v \in V$.
- 2. Let F be a field of characteristic p > 0 and G a finite p-group. Prove that $rad(F[G]) = \{\sum a_g g \in F[G] \mid \sum a_g = 0\}$. Determine all simple (left) F[G]-modules.
- 3. Let V be the kernel of $F^n \to F$ taking (a_1, \ldots, a_n) to $\sum a_i$. The symmetric group S_n acts on V by permutations of the coordinates. Prove that if the characteristic of F does not divide n, then the corresponding representation is irreducible.
- 4. Let ρ be a representation of a finite group G and V the corresponding G-space. Show that the dual space V^* has the structure of a G-space via $(g\varphi)(v) = \varphi(g^{-1}v)$ for $g \in G$, $\varphi \in V^*$ and $v \in V$. Prove that $\chi_{\rho^*}(g) = \chi(g^{-1})$, where ρ^* is the representation corresponding to the G-space V^* .
- 5. Show that ρ^* is irreducible if and only if so is ρ .

For all problems below the base field F is algebraically closed of characteristic zero.

- 6. Let G be a finite group. Define the abelian group Rep(G) by generators and relations as follows. The generators are the isomorphism classes $[\rho]$ of representations ρ of G. The relations are $[\rho \oplus \rho'] = [\rho] + [\rho']$ for all representations ρ and ρ' . Prove that Rep(G) is a free abelian group with basis the set of isomorphism classes of irreducible representations of G. Prove that the tensor product yields the structure of a commutative ring on Rep(G).
- 7. Let G be a finite group. Prove that the map $Rep(G) \to Ch(G)$ taking the class $[\rho]$ to the character χ_{ρ} is a well defined injective ring homomorphism. Write the multiplication table for $Rep(S_3)$.
- 8. Find all groups that have exactly 2 nonisomorphic representations.
- 9. Find an irreducible 2-dimensional representation of the symmetric group S_4 .
- 10. Let C(g) be the conjugacy class of an element g in a finite group G and χ be the character of an irreducible representation ρ . Prove that if |C(g)| is

relatively prime to $\dim(\rho)$ and $\chi(g) \neq 0$, then $\rho(g)$ is the multiplication by a scalar.