Take-Home Final due Friday, June 8, 2018

1. a) Let F be a field and $R=F[[t]]$ the ring of formal power series $\sum_{i \geq 0} a_{i} t^{i}$ with $a_{i} \in F$. Prove that R is a DVR.
b) Find a discrete valuation of the field of rational functions $\mathbb{Q}(x, y)$ with the residue field isomorphic to \mathbb{Q}.
2. Prove that the ring $\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)$ is a PID.
3. Let A be an algebra over a field F of zero characteristic and G a finite subgroup of the multiplicative group A^{\times}. Prove that if G spans A as a vector space over F, then A is a semisimple ring.
4. Let V be a finite dimensional vector space over an algebraically closed field F and $A \subset \operatorname{End}_{F}(V)$ an F-subalgebra. Prove that if V, viewed as a left A-module via the inclusion $A \hookrightarrow \operatorname{End}_{F}(V)$, is a simple A-module, then $A=\operatorname{End}_{F}(V)$.
5. Let $\chi_{1}, \chi_{2}, \ldots, \chi_{k}$ be all irreducible characters of a finite group G over \mathbb{C} and $g_{1}, g_{2}, \ldots, g_{k}$ representatives of all conjugacy classes $C_{1}, C_{2}, \ldots, C_{k}$, respectively. Let A be the $k \times k$ matrix $\left(\chi_{i}\left(g_{j}\right)\right)$. Prove that

$$
\operatorname{det}(A)^{2}=\frac{(-1)^{\frac{s}{2}}|G|^{k}}{\left|C_{1}\right|\left|C_{2}\right| \cdots\left|C_{k}\right|},
$$

where s is the number of indices $i=1,2, \ldots, k$ such that $C_{i}^{-1} \neq C_{i}$.
6. Let G be the symmetric group S_{3}. Prove that $\mathbb{Q}[G] \simeq \mathbb{Q} \times \mathbb{Q} \times M_{2}(\mathbb{Q})$.
7. Determine all irreducible representations over \mathbb{R} of the quaternion group Q_{8}.
8. Let χ be the character of a representation of a finite group G over \mathbb{C}. Prove that the function $G \rightarrow \mathbb{C}$ taking g to $\chi\left(g^{2}\right)$ is a linear combination of irreducible characters with integer coefficients.
9. Let A be a central simple F-algebra of dimension n^{2}. Prove that $A \simeq M_{n}(F)$ if and only if A has a left ideal I with $\operatorname{dim}_{F}(I)=n$.
10. Let A and B be central division algebras over a field F. Prove that if $\operatorname{dim}(A)$ and $\operatorname{dim}(B)$ are relatively prime, then $A \otimes_{F} B$ is a division algebra.

