Math 210C Take-Home Final due Friday, June 8, 2018 Name:

1. a) Let F be a field and R = F[[t]] the ring of formal power series $\sum_{i\geq 0} a_i t^i$ with $a_i \in F$. Prove that R is a DVR.

b) Find a discrete valuation of the field of rational functions $\mathbb{Q}(x, y)$ with the residue field isomorphic to \mathbb{Q} .

2. Prove that the ring $\mathbb{R}[x, y]/(x^2 + y^2 + 1)$ is a PID.

3. Let A be an algebra over a field F of zero characteristic and G a finite subgroup of the multiplicative group A^{\times} . Prove that if G spans A as a vector space over F, then A is a semisimple ring.

4. Let V be a finite dimensional vector space over an algebraically closed field F and $A \subset \operatorname{End}_F(V)$ an F-subalgebra. Prove that if V, viewed as a left A-module via the inclusion $A \hookrightarrow \operatorname{End}_F(V)$, is a simple A-module, then $A = \operatorname{End}_F(V)$.

5. Let $\chi_1, \chi_2, \ldots, \chi_k$ be all irreducible characters of a finite group G over \mathbb{C} and g_1, g_2, \ldots, g_k representatives of all conjugacy classes C_1, C_2, \ldots, C_k , respectively. Let A be the $k \times k$ matrix $(\chi_i(g_j))$. Prove that

$$\det(A)^{2} = \frac{(-1)^{\frac{3}{2}}|G|^{k}}{|C_{1}||C_{2}|\cdots|C_{k}|},$$

where s is the number of indices i = 1, 2, ..., k such that $C_i^{-1} \neq C_i$.

6. Let G be the symmetric group S_3 . Prove that $\mathbb{Q}[G] \simeq \mathbb{Q} \times \mathbb{Q} \times M_2(\mathbb{Q})$.

7. Determine all irreducible representations over \mathbb{R} of the quaternion group Q_8 .

8. Let χ be the character of a representation of a finite group G over \mathbb{C} . Prove that the function $G \to \mathbb{C}$ taking g to $\chi(g^2)$ is a linear combination of irreducible characters with integer coefficients.

9. Let A be a central simple F-algebra of dimension n^2 . Prove that $A \simeq M_n(F)$ if and only if A has a left ideal I with $\dim_F(I) = n$.

10. Let A and B be central division algebras over a field F. Prove that if $\dim(A)$ and $\dim(B)$ are relatively prime, then $A \otimes_F B$ is a division algebra.