Math 210C Take-Home Final due Wednesday, June 1, 2016 Name:

1. Let A be an algebra over a field F of zero characteristic and G a finite subgroup of the multiplicative group A^{\times} . Prove that if G spans A as a vector space over F, then A is a semisimple ring.

2. Let K/F be a Galois field extension of degree n. Prove that the ring $K \otimes_F K$ is isomorphic to the product of n copies of K.

3. Let K/F be a Galois field extension with Gal(K/F) = G, $H \subset G$ a subgroup of G and $E = K^{H}$. Prove that $Gal(E/F) = N_{G}(H)/H$, where $N_{G}(H)$ is the normalizer of H in G.

4. Let V be a finite dimensional vector space over an algebraically closed field F and $A \subset \operatorname{End}_F(V)$ an F-subalgebra. Prove that if V, viewed as a left A-module via the inclusion $A \to \operatorname{End}_F(V)$, is a simple A-module, then $A = \operatorname{End}_F(V)$.

5. Let A be a central simple F-algebra of dimension n^2 . Prove that $A \simeq M_n(F)$ if and only if A has a left ideal I with $\dim_F(I) = n$.

6. Let V be a simple finite dimensional G-space for a finite group G. Construct an isomorphism of G-spaces $V \otimes V$ and $\operatorname{Hom}(V^*, V)$. Prove that the dual Gspace V^* is isomorphic to V if and only if there is a nonzero G-invariant vector in the G-space $V \otimes V$. 7. Let A and B be central division algebras over a field F. Prove that if $\dim(A)$ and $\dim(B)$ are relatively prime, then $A \otimes_F B$ is a division algebra.

8. Find a discrete valuation on the field of rational functions $\mathbb{Q}(x, y)$ with the residue field isomorphic to \mathbb{Q} .

9. Let G be the symmetric group S_3 . Prove that $\mathbb{Q}[G] \simeq \mathbb{Q} \times \mathbb{Q} \times M_2(\mathbb{Q})$.

10. Determine all irreducible representations over $\mathbb R$ of the quaternion group of order 8.