HOMEWORK 9

1. Let V and W be inner product spaces of finite dimension such that $\operatorname{dim}(V) \leq \operatorname{dim}(W)$. Prove that there is a linear map $T: V \rightarrow W$ such that $\left\langle T(v), T\left(v^{\prime}\right)\right\rangle=\left\langle v, v^{\prime}\right\rangle$ for all $v, v^{\prime} \in V$.
2. Let $T: V \rightarrow V$ be an orthogonal projection on a subspace of an inner product space V. Prove that $\|T(v)\| \leq\|v\|$ for all $v \in V$.
3. Let $T: V \rightarrow V$ be a projection on a subspace of an inner product space V such that $\|T(v)\| \leq\|v\|$ for all $v \in V$. Prove that T is an orthogonal projection.
4. Let T be a normal operator on a finite dimensional inner product space. Prove that if $T: V \rightarrow V$ is a projection, then T is an orthogonal projection.
5. Let T be a normal operator on a finite dimensional complex inner product space such that $T^{n}=0$ for some $n>0$. Prove that $T=0$.
6. Let T be a normal operator on a finite dimensional complex inner product space. Prove that for any integer $n>0$, there exists a linear operator S such that $T=S^{n}$.
7. Let T be a unitary operator on a finite dimensional inner product space and $W \subset V$ a finite dimensional T-invariant subspace. Prove that W^{\perp} is also T-invariant.
8. Find an orthogonal matrix whose first row is $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$.
9. Let T be a unitary operator on a complex finite dimensional inner product space V. Prove that there exists a unitary operator S on V such that $T=S^{2}$.
10. Let T be a self-adjoint positive definite operator on a finite dimensional inner product space V. Prove that there is an operator S on V such that $T=S^{*} \cdot S$.
