HOMEWORK 5

1. Prove that if a nilpotent matrix A is diagonalizable, then $A=0$.
2. Prove that if a matrix A is diagonalizable, then so is A^{2}.
3. Suppose that $f(T)=0=g(T)$ for a linear operator T. Prove that the polynomials f and g are not relatively prime.
4. Let A be an $n \times n$ matrix with n distinct eigenvalues. Prove that A is diagonalizable.
5. Find the Jordan canonical form and the Jordan canonical basis for the linear operator on $P_{2}(\mathbb{R})$ defined by $T(f)=2 f-f^{\prime}$.
6. Find the Jordan canonical form and the Jordan canonical basis for the linear operator on $M_{2 \times 2}(F)$ defined by $T(A)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \cdot A$.
7. Find the Jordan canonical form and the Jordan basis for the linear operator on $M_{2 \times 2}(F)$ defined by $T(A)=2 A+A^{t}$.
8. Find the Jordan canonical form of the matrix $\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & -1 & 3\end{array}\right)$
9. Let J be the Jordan canonical form of a linear operator T. Find the Jordan canonical form of the operator $a T$, where a is a nonzero scalar.
10. Let W be a subspace of a vector space V. Let $T: V \rightarrow V / W$ be the linear operator defined by $T(v)=\bar{v}$. Consider the dual operator $T^{*}:(V / W)^{*} \rightarrow$ V^{*}. Prove that $N\left(T^{*}\right)=\{0\}$ and $R\left(T^{*}\right)$ coincides with the null space of the restriction operator $V^{*} \rightarrow W^{*}$.
