HOMEWORK 2

1. Let V be a vector space and let $\Phi_{V}: V \rightarrow V^{* *}$ be the canonical linear map. Let $T: V \rightarrow W$ be a linear map. Prove that the diagram

is commutative, i.e., the compositions $\Phi_{W} \circ T$ and $T^{* *} \circ \Phi_{V}$ coincide.
2. Let $W_{1}, W_{2}, \ldots, W_{n}$ be subspaces of a vector space V. For every $i=1,2, \ldots, n$, let Z_{i} be the subspace $W_{1}+\cdots+W_{i-1}+W_{i+1}+\cdots+W_{n}$ of V. Prove that the sum $W_{1}+W_{2}+\cdots+W_{n}$ is direct if and only if $W_{i} \cap Z_{i}=\{0\}$ for every i.
3. Let $V_{1}, V_{2}, \ldots, V_{n}$ be vector spaces over a field F. Prove that the component-wise addition and scalar multiplication makes the product $V=V_{1} \times V_{2} \times \cdots \times V_{n}$ a vector space over F. For every $i=1,2, \ldots, n$, let W_{i} be the subspace of $V=V_{1} \times V_{2} \times \cdots \times V_{n}$ consisting of all tuples $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ such that $v_{j}=0$ for all $j \neq i$. Prove that $V=$ $W_{1} \oplus W_{2} \oplus \cdots \oplus W_{n}$.
4. Let $W_{1}, W_{2}, \ldots, W_{n}$ be subspaces of a vector space V such that $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{n}$. Let $T_{i}: W_{i} \rightarrow Z$ be linear maps, $i=$ $1,2, \ldots, n$. Prove that there is a unique linear map $T: V \rightarrow Z$ such that $T\left(w_{1}+w_{2}+\cdots+w_{n}\right)=T_{1}\left(w_{1}\right)+T_{2}\left(w_{2}\right)+\cdots+T_{n}\left(w_{n}\right)$ for all $w_{i} \in W_{i}$.
5. Let V be a finite dimensional vector space and $W \subset V$ a subspace. Prove that there is a subspace $W^{\prime} \subset V$ such that $V=W \oplus W^{\prime}$.
6. Let $V=W_{1}+W_{2}$ and $W=W_{1} \cap W_{2}$. Prove that
$V / W=\left(W_{1} / W\right) \oplus\left(W_{2} / W\right)$.
7. Let W and W^{\prime} be subspaces of a vector space V such that $V=$ $W \oplus W^{\prime}$. Prove that the vector spaces V / W and W^{\prime} are isomorphic.
8. Let V be a vector space, $W \subset V$ a subspace and $v_{1}, v_{2}, \ldots, v_{n} \in$ V. Prove that if $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n} \in V / W$ are linearly independent, then $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent in V.
9. Let V be a vector space and $W \subset V$ a subspace. Prove that the map $T: V \rightarrow V / W$ defined by $T(v)=\bar{v}$ is linear. Determine $N(T)$ and $R(T)$.
10. Let $T: V \rightarrow V^{\prime}$ be a linear map. Prove that the spaces $V / N(T)$ and $R(T)$ are isomorphic.
