HOMEWORK 1

1. Let V be a vector space, S a set and $s \in S$. Consider the subset W in the vector space U of all maps $f: S \rightarrow V$ such that $f(s)=0$. Is W a subspace of U ?
2. Prove that $\operatorname{span}\{(1,-1,0),(0,1,-1)\}$ coincides with the subspace of \mathbb{R}^{3} consisting of all vectors (a, b, c) such that $a+b+c=0$.
3. Let S be a linearly dependent subset of a vector space V. Let S^{\prime} be the subset of S consisting of all vectors in S that are linear combinations of other vectors in S. For any $n>0$, find the smallest value of $\operatorname{card}\left(S^{\prime}\right)$ over all vector spaces V and all subsets $S \subset V$ with $\operatorname{card}(S)=n$.
4. Find the dimension of $\operatorname{span}\left\{X^{2}-1,(X-1)^{2}, X-1\right\}$ in $P_{2}[X]$.
5. Let $T: V \rightarrow W$ be a linear map. Show that if the vectors $v_{1}, v_{2}, \ldots, v_{n}$ span V, then the vectors $T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)$ span the range $R(T)$.
6. Let $T: V \rightarrow V$ be a linear map such that $N\left(T^{2}\right) \neq 0$. Show that $N(T) \neq 0$.
7. Let V be a vector space of dimension n and $W \subset V$ a subspace of dimension $n-1$. Prove that there is an $f \in V^{*}$ such that $W=N(f)$.
8. Let $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be the dual basis of a basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Find the dual basis of the basis $\left\{v_{1}+v_{2}, v_{2}, \ldots, v_{n}\right\}$.
9. Let $T: V \rightarrow W$ be a linear map. Prove that $\operatorname{dim} N(T)+\operatorname{dim} R\left(T^{*}\right)=$ $\operatorname{dim}(V)$.
10. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis of a subspace W of a vector space V. Let $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{m}, \ldots, v_{n}\right\}$ be a basis of V and $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ the dual basis of S^{\prime}. Write g_{i} for the restriction of the linear function f_{i} on W. Prove that $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ is the dual basis of S.
