## HOMEWORK 8

1. Let $a, b \in F$ be nonzero elements such that $a+b \neq 0$. Prove that the quadratic forms $\langle a, b\rangle$ and $\langle a+b, a b(a+b)\rangle$ on $F^{2}$ are isomorphic.
2. Determine all isometries of the quadratic form $Q(x, y)=x y$ on $F^{2}$.
3. Let $B$ be a bilinear form on a vector space $V$ and $W \subset V$ a subspace. Prove that $\left(\left(W^{\perp}\right)^{\perp}\right)^{\perp}=W^{\perp}$.
4. Prove that $B(X, Y)=\operatorname{trace}(X Y)$ is a bilinear form on $M_{2 \times 2}(F)$. Is $B$ non-degenerate?
5. Let $S$ be a subset of an inner product vector space $V$ and $W=\operatorname{span}(S)$. Prove that $v \in W^{\perp}$ if and only if $v \perp w$ for all $w \in S$.
6. Let $T$ be a linear operator on an inner product vector space $V$ such that $\|T(v)\|=\|v\|$ for all $v \in V$. Prove that $T$ is one-to-one.
7. Let $T$ be a linear operator on an inner product vector space $V$ such that $\|T(v)\|=\|v\|$ for all $v \in V$. Prove that $\langle T(v), T(u)\rangle=\langle v, u\rangle$ for all $v, u \in V$.
8. A self-adjoint linear operator $T$ on a finite dimensional inner product vector space $V$ is called positive definite if $\langle T(v), v\rangle>0$ for every nonzero $v \in$ $V$. Prove that an operator $T$ is positive definite if and only if all eigenvalues of $T$ are positive.
9. Let $T$ be a linear operator on a finite dimensional inner product vector space $V$. Prove that if $T$ is an isomorphism, then the operators $T T^{*}$ and $T^{*} T$ are positive definite.
10. Let $T$ be a positive definite operator on an inner product vector space $V$. Prove that the formula $\langle v, u\rangle^{\prime}=\langle T(v), u\rangle$ defines another inner product on $V$.
