HOMEWORK 7

1. Let B be a bilinear form on a finite dimensional vector space V, β a basis for V. Prove that B is symmetric if and only if the matrix $[B]_{\beta}$ is symmetric.
2. Let B be a bilinear form on a finite dimensional vector space V. Suppose that for any nonzero $v \in V$ there exists a $u \in V$ such that $B(v, u) \neq 0$. Prove that for any nonzero $u \in V$ there exists a $v \in V$ such that $B(v, u) \neq 0$.
3. Let B be a bilinear form on a finite dimensional vector space V, β a basis for V. Let $T_{B}: V \rightarrow V^{*}$ be the corresponding linear map. Prove that $\left([B]_{\beta}\right)^{t}=\left[T_{B}\right]_{\beta}^{\beta^{*}}$, where β^{*} is the dual basis for V^{*}.
4. Let B be a bilinear form on a finite dimensional vector space V. Prove that there is a unique bilinear form \bar{B} on the factor space V / V^{\perp} such that $\bar{B}(\bar{v}, \bar{u})=B(v, u)$ for all $v, u \in V$.
5. Let B be a bilinear form on a finite dimensional vector space V, β and γ two bases for V. Prove that $[B]_{\gamma}=C^{t} \cdot[B]_{\beta} \cdot C$, where C is the change of basis matrix.
6. Show that all quadratic forms on a vector space V of dimension n form a vector space $\operatorname{Quad}(V)$. Determine $\operatorname{dim} \operatorname{Quad}(V)$.
7. Let Q be quadratic form on a real vector space V of dimension n such that $Q(v)>0$ for all nonzero $v \in V$. Prove that there is an orthogonal basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for V such that $Q\left(v_{i}\right)=1$ for all i.
8. Let Q be the quadratic form on \mathbb{R}^{3} defined by

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} .
$$

Find an orthogonal basis for \mathbb{R}^{3}.
9. Let Q be the quadratic form on $P_{n}(\mathbb{R})$ defined by $Q(f)=f(0)^{2}$. Find an orthogonal basis for $P_{n}(\mathbb{R})$.
10. Let Q be the quadratic form on $M_{2 \times 2}(\mathbb{R})$ defined by $Q(A)=\operatorname{det}(A)$. Find an orthogonal basis for $M_{2 \times 2}(\mathbb{R})$.

