HOMEWORK 6

1. Let V be a real vector space of real-valued functions spanned by $e^{t}, t e^{t}, t^{2} e^{t}$ and $e^{2 t}$. Find a Jordan canonical basis and a Jordan canonical form of the operator T on V defined by $T(f)=f^{\prime}$.
2. Find a Jordan canonical basis and a Jordan canonical form of the operator T on $P_{3}(\mathbb{R})$ defined by $T(f(x))=x f^{\prime \prime}(x)$.
3. Find a Jordan canonical basis and a Jordan canonical form of the operator T on $P_{3}(\mathbb{R})$ defined by $T(f)=f^{\prime \prime}+2 f$.
4. Find a Jordan canonical basis and a Jordan canonical form of the operator T on $M_{2 \times 2}(\mathbb{R})$ defined by

$$
T(A)=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right) \cdot A-A^{t}
$$

5. Find a Jordan canonical basis and a Jordan canonical form of the operator T on $M_{2 \times 2}(\mathbb{R})$ defined by

$$
T(A)=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right) \cdot\left(A-A^{t}\right) .
$$

6. Let V be a real vector space of polynomials in two variables x and y of degree at most 2. Find a Jordan canonical basis and a Jordan canonical form of the operator T on V defined by

$$
T(f(x, y))=\frac{\partial}{\partial x} f(x, y)+\frac{\partial}{\partial y} f(x, y)
$$

7. Let $A \in M_{n \times n}(F)$ be such that the characteristic polynomial P_{A} is split. Prove that the matrices A and A^{t} are similar.
8. Let T be a linear operator in a finite dimensional vector space V such that the characteristic polynomial of T is split, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be all eigenvalues of T. Let $S: V \rightarrow V$ be the linear map defined by

$$
S(v)=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{k} v_{k},
$$

where for each i, v_{i} is the unique generalized eigenvector for the eigenvalue λ_{i}, such that $v=v_{1}+v_{2}+\ldots+v_{k}$. Prove that S is a diagonalizable operator and the operator $T-S$ is nilpotent.
9. Let P_{1} and P_{2} be two projectors in vector space V such that $P_{1} P_{2}=P_{2} P_{1}$. Prove that $P_{1} P_{2}$ is also projector and $R\left(P_{1} P_{2}\right)=R\left(P_{1}\right) \cap R\left(P_{2}\right)$.
10. Let $P: V \rightarrow V$ be a projector in a vector space V of dimension n. Prove that there is a basis β for V such that

$$
[P]_{\beta}=\left(\begin{array}{cl}
I_{k} & 0 \\
0 & 0_{n-k}
\end{array}\right)
$$

