HOMEWORK 5

1. Let T be a linear operator in a vector space of finite dimension. Prove that T is nilpotent (i.e., T^{m} is the zero operator for some $m>0$) if and only if the matrix of T is some basis is strictly upper triangular (all elements on the main diagonal and below are zero).
2. Let T be a nilpotent operator in a vector space of dimension n. Prove that T is nilpotent if and only if $P_{T}=X^{n}$.
3. Let T be a nilpotent operator in a vector space of dimension n. Prove that $T^{n}=0$.
4. Let T be a nilpotent operator in a vector space of finite dimension. Suppose that $R\left(T^{m}\right)=R\left(T^{m+1}\right)$ for some $m>0$. Prove that $T^{m}=0$.
5. Find the Jordan canonical form and the Jordan canonical basis for the linear operator on $P_{2}(\mathbb{R})$ defined by $T(f)=2 f-f^{\prime}$.
6. Find the Jordan canonical form and the Jordan canonical basis for the linear operator on $M_{2 \times 2}(F)$ defined by $T(A)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \cdot A$.
7. Find the Jordan canonical form and the Jordan basis for the linear operator on $M_{2 \times 2}(F)$ defined by $T(A)=2 A+A^{t}$.
8. Find the Jordan canonical form of the matrix $\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & -1 & 3\end{array}\right)$
9. Let J be the Jordan canonical form of a linear operator T. Find the Jordan canonical form of the operator $a T$, where a is a nonzero scalar.
10. Let W be a subspace of a vector space V. Let $T: V \rightarrow V / W$ be the linear operator defined by $T(v)=\bar{v}$. Consider the dual operator $T^{*}:(V / W)^{*} \rightarrow$ V^{*}. Prove that $N\left(T^{*}\right)=\{0\}$ and $R\left(T^{*}\right)$ coincides with the null space of the restriction operator $V^{*} \rightarrow W^{*}$.
