HOMEWORK 4

1. Find all monic divisors of the polynomial $X\left(X^{2}-1\right)(X+1)$ over \mathbb{Q}.
2. Find polynomials f and g over \mathbb{R} such that $(X-1)^{2} \cdot f+(X+1)^{2} \cdot g=1$.
3. Find the remainder on dividing X^{3} by $X^{2}+1$.
4. Let $A \in M_{n \times n}(\mathbb{C})$ and $f \in \mathbb{C}[X]$ a polynomial relatively prime to the minimal polynomial m_{A}. Prove that the matrix $f(A)$ is invertible.
5. Find a matrix A over \mathbb{R} that is not diagonalizable, but A is diagonalizable over \mathbb{C}.
6. Let T be an operator in a vector space V of finite dimension over F such that $\left(T-\lambda \cdot I d_{V}\right)^{k}=0$ for some $\lambda \in F$ and $k>0$. Prove that T is diagonalizable if and only if $T=\lambda \cdot I d_{V}$.
7. Let W and W^{\prime} be subspaces of a vector space V such that $V=W \oplus W^{\prime}$. Prove that the vector spaces V / W and W^{\prime} are isomorphic.
8. Let V be a vector space, $W \subset V$ a subspace and $v_{1}, v_{2}, \ldots, v_{n} \in V$. Prove that if $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n} \in V / W$ are linearly independent, then $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent in V.
9. Let V be a vector space and $W \subset V$ a subspace. Prove that the map $T: V \rightarrow V / W$ defined by $T(v)=\bar{v}$ is linear. Determine $N(T)$ and $R(T)$.
10. Let $T: V \rightarrow V$ be a linear operator and $W \subset V$ a T-invariant subspace. Prove that there is a linear map $\bar{T}: V / W \rightarrow V / W$ such that $\bar{T}(\bar{v})=\overline{T(v)}$ for all $v \in V$.
