HOMEWORK 3

1. Let T be a linear operator on a vector space V over F and let f be a polynomial over F. Prove that the subspaces $N(f(T))$ and $R(f(T))$ of V are T-invariant.
2. Let $A \in M_{n \times n}(F)$. Show that the Cayley-Hamilton Theorem implies that $\operatorname{dim} \operatorname{span}\left(I_{n}, A, A^{2}, A^{3}, \ldots\right) \leq n$.
3. Let $A \in M_{n \times n}(F)$. Prove that dim $\operatorname{span}\left(I_{n}, A, A^{2}, A^{3}, \ldots\right)=\operatorname{deg}\left(m_{A}\right)$, where m_{A} is the minimal polynomial of A.
4. Let $A \in M_{n \times n}(F)$ and let $T=L_{A}: F^{n} \rightarrow F^{n}$ be the linear operator of left multiplication by A, i.e., $T(X)=A X$. Prove that $m_{T}=m_{A}$.
5. Let $T: F^{2} \rightarrow F^{2}$ be the linear operator defined by $T(a, b)=(a+b, a-b)$. Determine the minimal polynomial m_{T}.
6. Determine m_{A} for the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

7. Let T be the linear operator on the space $M_{n \times n}(F)$ defined by $T(A)=A^{t}$. Determine m_{T}.
8. Let T be a linear operator on a vector space V of dimension n. Suppose that the characteristic polynomial P_{T} splits. Prove that P_{T} divides $\left(m_{T}\right)^{n}$.
9. Let T be a linear operator on a finite dimensional vector space V and let $W \subset V$ be a T-invariant subspace. Let $S: W \rightarrow W$ be the restriction of T on W. Prove that m_{S} divides m_{T}.
10. Let T be an invertible linear operator on a finite dimensional vector space V over F. Prove that there exists a polynomial $f \in F[X]$ such that $T^{-1}=f(T)$.
