HOMEWORK 2

1. Let V be a vector space and let $\Phi_{V}: V \rightarrow V^{* *}$ be the canonical linear map. Let $T: V \rightarrow W$ be a linear map. Prove that the diagram

is commutative.
2. Let $W_{1}, W_{2}, \ldots, W_{n}$ be subspaces of a vector space V. For every $i=1,2, \ldots, n$, let Z_{i} be the subspace $W_{1}+\cdots+W_{i-1}+W_{i+1}+\cdots+W_{n}$ of V. Prove that the sum $W_{1}+W_{2}+\cdots+W_{n}$ id direct if and only if $W_{i} \cap Z_{i}=\{0\}$ for every i.
3. Let $V_{1}, V_{2}, \ldots, V_{n}$ be vector spaces over a field F. Prove that the component-wise addition and scalar multiplication makes the product $V=V_{1} \times V_{2} \times \cdots \times V_{n}$ a vector space over F. For every $i=1,2, \ldots, n$, let W_{i} be the subspace of $V=V_{1} \times V_{2} \times \cdots \times V_{n}$ consisting of all tuples $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ such that $v_{j}=0$ for all $j \neq i$. Prove that $V=$ $W_{1} \oplus W_{2} \oplus \cdots \oplus W_{n}$.
4. Let $W_{1}, W_{2}, \ldots, W_{n}$ be subspaces of a vector space V such that $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{n}$. Let $T_{i}: W_{i} \rightarrow Z$ be linear maps, $i=$ $1,2, \ldots, n$. Prove that there is a unique linear map $T: V \rightarrow Z$ such that $T\left(w_{1}+w_{2}+\cdots+w_{n}\right)=T_{1}\left(w_{1}\right)+T_{2}\left(w_{2}\right)+\cdots+T_{n}\left(w_{n}\right)$ for all $w_{i} \in W_{i}$.
5. Let $T: V \rightarrow V$ be a linear operator in a vector space V. Prove that the subspaces $N(T)$ and $R(T)$ of V are T-invariant.
6. Let T be the differentiation operator in the space $P_{n}(\mathbb{R})$ of all polynomials over \mathbb{R} of degree at most n, i.e., $T(f)=f^{\prime}$ for every f. Determine all T-invariant subspaces in $P_{n}(\mathbb{R})$.
7. Let $T: V \rightarrow V$ be a linear operator in a vector space V of dimension n. Prove that T is diagonalizable if and only if there are T-invariant 1 -dimensional subspaces $W_{1}, W_{2}, \ldots, W_{n} \subset V$ such that $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{n}$.
8. Let $T: V \rightarrow V$ be a linear operator in a vector space V of dimension n. Prove that there is a flag of T-invariant subspaces

$$
\{0\}=W_{0} \subset W_{1} \subset \cdots \subset W_{n}=V
$$

with $\operatorname{dim}\left(W_{i}\right)=i$ for all i if and only if there exists a basis β for V such that the matrix $[T]_{\beta}$ is upper triangular (i.e., all the elements below the diagonal are zero).
9. Let $T: V \rightarrow V$ be a linear operator in a vector space V. Prove that for every vector $v \in V$ there is a T-invariant subspace $W_{v} \subset V$ such that W_{v} is contained in every T-invariant subspace of V that contains v.
10. Let $T: V \rightarrow V$ be a linear operator in a vector space V and $W \subset V$ a T-invariant subspace. Let $v_{1}, v_{2}, \ldots, v_{n}$ be eigenvectors of T with distinct eigenvalues. Prove that if $v_{1}+v_{2}+\cdots+v_{n} \in W$, then $v_{i} \in W$ for all i.

