HOMEWORK 8

1. Let V be an inner product space. Show that $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$ for all $x, y \in V$.

2. Prove that $B(X, Y) = \det(X + Y) - \det(X) - \det(Y)$ is a bilinear form on $M_{2\times 2}(\mathbb{R})$. Is B an inner product?

3. Let V be an inner product space and $x, y \in V$. Prove that $|\langle x, y \rangle| = ||x|| \cdot ||y||$ if and only if one of the vectors x or y is a multiple of the other.

4. Let V be an inner product space and $v, w \in V$. Prove that $|(||x|| - ||y||)| \le ||x - y||$.

5. Apply the Gram-Schmidt process to the subset $\{(1,0,1), (0,1,1), (1,3,3)\}$ of \mathbb{R}^3 .

6. Let $S = \{(1, 0, i), (1, 2, 1)\}$ in \mathbb{C}^3 . Find a basis for S^{\perp} .

7. Let V be an inner product space and W a finite dimensional subspace of V. Prove that $(W^{\perp})^{\perp} = W$.

8. Let W_1 and W_2 be subspaces of a finite dimensional inner product space V. Prove that $(W_1 + W_2)^{\perp} = (W_1)^{\perp} \cap (W_2)^{\perp}$ and $(W_1 \cap W_2)^{\perp} = (W_1)^{\perp} + (W_2)^{\perp}$.

9. Let V be an inner product space and W a finite dimensional subspace of V. Prove that $V = W \oplus W^{\perp}$.

10(*). Let V be a real inner product space and $S = \{v_1, v_2, \ldots, v_n\} \subset V$. Prove that S is linearly independent if and only if the determinant of the matrix

$$\begin{pmatrix} \langle v_1, v_1 \rangle & \langle v_1, v_2 \rangle & \langle v_1, v_3 \rangle & \dots & \langle v_1, v_{n-1} \rangle & \langle v_1, v_n \rangle \\ \langle v_2, v_1 \rangle & \langle v_2, v_2 \rangle & \langle v_2, v_3 \rangle & \dots & \langle v_2, v_{n-1} \rangle & \langle v_2, v_n \rangle \\ \langle v_3, v_1 \rangle & \langle v_3, v_2 \rangle & \langle v_3, v_3 \rangle & \dots & \langle v_3, v_{n-1} \rangle & \langle v_3, v_n \rangle \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \langle v_{n-1}, v_1 \rangle & \langle v_{n-1}, v_2 \rangle & \langle v_{n-1}, v_3 \rangle & \dots & \langle v_{n-1}, v_{n-1} \rangle & \langle v_{n-1}, v_n \rangle \\ \langle v_n, v_1 \rangle & \langle v_n, v_2 \rangle & \langle v_n, v_3 \rangle & \dots & \langle v_n, v_{n-1} \rangle & \langle v_n, v_n \rangle \end{pmatrix}$$

is nonzero.