HOMEWORK 8

1. Let V be an inner product space. Show that $\|x+y\|^{2}+\|x-y\|^{2}=$ $2\|x\|^{2}+2\|y\|^{2}$ for all $x, y \in V$.
2. Prove that $B(X, Y)=\operatorname{det}(X+Y)-\operatorname{det}(X)-\operatorname{det}(Y)$ is a bilinear form on $M_{2 \times 2}(\mathbb{R})$. Is B an inner product?
3. Let V be an inner product space and $x, y \in V$. Prove that $|\langle x, y\rangle|=$ $\|x\| \cdot\|y\|$ if and only if one of the vectors x or y is a multiple of the other.
4. Let V be an inner product space and $v, w \in V$. Prove that $|(\|x\|-\|y\|)| \leq$ $\|x-y\|$.
5. Apply the Gram-Schmidt process to the subset $\{(1,0,1),(0,1,1),(1,3,3)\}$ of \mathbb{R}^{3}.
6. Let $S=\{(1,0, i),(1,2,1)\}$ in \mathbb{C}^{3}. Find a basis for S^{\perp}.
7. Let V be an inner product space and W a finite dimensional subspace of V. Prove that $\left(W^{\perp}\right)^{\perp}=W$.
8. Let W_{1} and W_{2} be subspaces of a finite dimensional inner product space V. Prove that $\left(W_{1}+W_{2}\right)^{\perp}=\left(W_{1}\right)^{\perp} \cap\left(W_{2}\right)^{\perp}$ and $\left(W_{1} \cap W_{2}\right)^{\perp}=\left(W_{1}\right)^{\perp}+\left(W_{2}\right)^{\perp}$.
9. Let V be an inner product space and W a finite dimensional subspace of V. Prove that $V=W \oplus W^{\perp}$.
$10\left({ }^{*}\right)$. Let V be a real inner product space and $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset V$. Prove that S is linearly independent if and only if the determinant of the matrix

$$
\left(\begin{array}{cccccc}
\left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}, v_{2}\right\rangle & \left\langle v_{1}, v_{3}\right\rangle & \ldots & \left\langle v_{1}, v_{n-1}\right\rangle & \left\langle v_{1}, v_{n}\right\rangle \\
\left\langle v_{2}, v_{1}\right\rangle & \left\langle v_{2}, v_{2}\right\rangle & \left\langle v_{2}, v_{3}\right\rangle & \ldots & \left\langle v_{2}, v_{n-1}\right\rangle & \left\langle v_{2}, v_{n}\right\rangle \\
\left\langle v_{3}, v_{1}\right\rangle & \left\langle v_{3}, v_{2}\right\rangle & \left\langle v_{3}, v_{3}\right\rangle & \ldots & \left\langle v_{3}, v_{n-1}\right\rangle & \left\langle v_{3}, v_{n}\right\rangle \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\left\langle v_{n-1}, v_{1}\right\rangle & \left\langle v_{n-1}, v_{2}\right\rangle & \left\langle v_{n-1}, v_{3}\right\rangle & \ldots & \left\langle v_{n-1}, v_{n-1}\right\rangle & \left\langle v_{n-1}, v_{n}\right\rangle \\
\left\langle v_{n}, v_{1}\right\rangle & \left\langle v_{n}, v_{2}\right\rangle & \left\langle v_{n}, v_{3}\right\rangle & \ldots & \left\langle v_{n}, v_{n-1}\right\rangle & \left\langle v_{n}, v_{n}\right\rangle
\end{array}\right)
$$

is nonzero.

