HOMEWORK 7

1. Prove that for any $A \in M_{n \times n}(F)$, the matrices A and A^{t} have the same eigenvalues.
2. Let λ be an eigenvalue of a linear operator \mathcal{A}. Prove that for any $m \geq 1$, λ^{m} is an eigenvalue of \mathcal{A}^{m}.
3. Let \mathcal{A} be a diagonalizable linear operator on a vector space V. Prove that the operator $a_{n} \mathcal{A}^{n}+a_{n-1} \mathcal{A}^{n-1}+\ldots+a_{1} \mathcal{A}+a_{0} I_{V}$ on V is also diagonalizable for any scalars $a_{0}, a_{1}, \ldots, a_{n}$.
4. Determine all diagonalizable 2×2 matrices over the a field F consisting of two elements 0 and 1.
5. Prove that if a matrix $A \in M_{n \times n}(F)$ has n distinct eigenvalues, then A is diagonalizable.
6. Give an example of a matrix $A \in M_{n \times n}(\mathbb{R})$ that is not diagonalizable, but A is diagonalizable viewed as a matrix over the field of complex numbers \mathbb{C}.
7. Let W_{1} be a subspace of a finite dimensional vector space V. Prove that there is subspace $W_{2} \subset V$ such that $V=W_{1} \oplus W_{2}$.
8. Let W_{1} and W_{2} be subspaces of a vector space V such that $V=W_{1} \oplus W_{2}$. Prove that for every subspace V^{\prime} of V containing W_{1} one has $V^{\prime}=W_{1} \oplus\left(V^{\prime} \cap W_{2}\right)$.
9. Let $W_{1}, W_{2}, \ldots, W_{k}$ be subspaces of a finite dimensional vector space V such that $V=W_{1}+W_{2}+\ldots+W_{k}$. Prove that $V=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{k}$ if and only if $\operatorname{dim}(V)=\sum \operatorname{dim}\left(W_{i}\right)$.
$10\left({ }^{*}\right)$. Let \mathcal{A} be a linear operator such that the operator \mathcal{A}^{2} is diagonalizable. Is \mathcal{A} necessarily diagonalizable?
