HOMEWORK 6

1. Prove that the system of linear equations $A X=B$ has a solution if and only if $B \in R\left(L_{A}\right)$.
2. Let $A \in M_{n \times n}(F)$. Suppose that the system of linear equations $A X=B$ has more than one solution. Prove that there is a column $C \in F^{n}$ such that the system of linear equations $A X=C$ is inconsistent.
3. Let $A \in M_{m \times n}(\mathbb{Q})$ and $B \in \mathbb{Q}^{m}$, where \mathbb{Q} is the field of rational numbers. Suppose that the system of linear equations $A X=B$ has a solution in \mathbb{R}^{n}, where \mathbb{R} is the field of real numbers. Does it necessarily have a solution in \mathbb{Q}^{n} ?
4. Let B be a bilinear form on a finite dimensional vector space V. Suppose that for any nonzero vector $x \in V$ there exists a $y \in V$ such that $B(x, y) \neq 0$. Prove that for any linear function $f \in V^{*}$ there exists an $x \in V$ such that $f(y)=B(x, y)$ for all $y \in V$.
5. Give an example of a nonzero alternating bilinear form on the space $P_{1}(F)$ over F.
6. Prove that every n-linear alternating form on a vector space of dimension less than n is the zero form.
7. Prove that $\operatorname{det}(a A)=a^{n} \operatorname{det}(A)$ for any $A \in M_{n \times n}(F)$.
8. Let $A \in M_{n \times n}(F)$ such that $\operatorname{rank}(A)<n$. Prove that $\operatorname{det}(A)=0$.
9. Let $A \in M_{n \times n}(\mathbb{R})$ be a skew-symmetric matrix, i.e., $A^{t}=-A$. Prove that if n is odd, then $\operatorname{det}(A)=0$.
$10(*)$. Evaluate $\operatorname{det}(A)$, where A is the $n \times n$ matrix defined by $a_{i j}=$ $\min \{i, j\}$.
