HOMEWORK 5

1. Let $\mathcal{A}: V \rightarrow W$ and $\mathcal{B}: W \rightarrow Z$ be linear maps. Prove that $(\mathcal{B} \circ \mathcal{A})^{*}=$ $\mathcal{A}^{*} \circ \mathcal{B}^{*}$.
2. Let $\mathcal{A}: V \rightarrow W$ be a linear map of finite dimensional vector spaces. Let $\varphi_{1}: V \rightarrow V^{* *}$ and $\varphi_{2}: W \rightarrow W^{* *}$ be canonical isomorphisms. Prove that $\mathcal{A}^{* *} \circ \varphi_{1}=\varphi_{2} \circ \mathcal{A}$, where $\mathcal{A}^{* *}=\left(\mathcal{A}^{*}\right)^{*}$ is the linear map from $V^{* *}$ to $W^{* *}$.
3. For a subspace W of a vector space V define

$$
W^{0}=\left\{f \in V^{*} \mid f(v)=0 \quad \text { for all } \quad v \in W\right\}
$$

Show that W^{0} is a subspace of V^{*} and prove that $\operatorname{dim}(W)+\operatorname{dim}\left(W^{0}\right)=$ $\operatorname{dim}(V)$.
4. For subspaces W_{1} and W_{2} of a finite dimensional vector space V show that $\left(W_{1}+W_{2}\right)^{0}=\left(W_{1}\right)^{0} \cap\left(W_{2}\right)^{0}$ and $\left(W_{1} \cap W_{2}\right)^{0}=\left(W_{1}\right)^{0}+\left(W_{2}\right)^{0}$.
5. Let $\mathcal{A}: V \rightarrow W$ be a linear map of finite dimensional vector spaces. Prove that \mathcal{A} is surjective (respectively, injective) if and only if \mathcal{A}^{*} is injective (respectively, surjective).
6. Prove that a matrix $A \in M_{n \times n}(F)$ is invertible if and only if $\operatorname{rank}(A)=n$.
7. Let $A, B \in M_{m \times n}(F)$. Prove that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$.
8. Let $A \in M_{m \times n}(F)$ be a matrix with $\operatorname{rank}(A)=m$. Prove that there exists a matrix $B \in M_{n \times m}(F)$ such that $A B=I_{m}$.
9. Let $A \in M_{m \times n}(F)$ and $B \in M_{n \times m}(F)$ be two matrices such that $A B=I_{m}$. Prove that $n \geq m$.
$10\left(^{*}\right)$. Let $A \in M_{m \times n}(F)$. Prove that $\operatorname{rank}(A) \leq 1$ if and only if there exist $X \in M_{m \times 1}(F)$ and $Y \in M_{1 \times n}(F)$ such that $A=X Y$.

