HOMEWORK 4

1. Let $L_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be left multiplication by

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Find $\operatorname{dim} N\left(L_{A}\right)$ and $\operatorname{dim} R\left(L_{A}\right)$.
2. Let \mathcal{A}, \mathcal{B} and \mathcal{C} be linear maps $V \rightarrow V$. Prove that $(\mathcal{A} \circ \mathcal{B}) \circ \mathcal{C}=\mathcal{A} \circ(\mathcal{B} \circ \mathcal{C})$ and $\mathcal{A} \circ(\mathcal{B}+\mathcal{C})=\mathcal{A} \circ \mathcal{B}+\mathcal{A} \circ \mathcal{C}$.
3. Let $\mathcal{A}: V \rightarrow V$ be a linear map. Prove that $\mathcal{A}^{2}=0$ if and only if $R(\mathcal{A}) \subset \mathcal{N}(\mathcal{A})$.
4. Let $\mathcal{A}: V \rightarrow W$ be a linear map of vector spaces and let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a basis for V. Prove that \mathcal{A} is an isomorphism if and only if $\left\{\mathcal{A}\left(x_{1}\right), \mathcal{A}\left(x_{2}\right), \ldots, \mathcal{A}\left(x_{n}\right)\right\}$ is a basis for W.
5. Prove that an $n \times n$ matrix A over a field F is invertible if and only if the columns of A form a basis for F^{n}.
6. Let $\mathcal{A}: V \rightarrow W$ and $\mathcal{B}: W \rightarrow Z$ be linear maps. Prove that $N(\mathcal{A}) \subset$ $N(\mathcal{B} \circ \mathcal{A})$ and $R(\mathcal{B} \circ \mathcal{A}) \subset R(\mathcal{B})$.
7. Let $\mathcal{A}: V \rightarrow V$ be a linear map and $\operatorname{dim}(V)<\infty$. Prove that there is $n>0$ such that $N\left(\mathcal{A}^{n}\right)=N\left(\mathcal{A}^{n+1}\right)$.
8. Let $\mathcal{A}: V \rightarrow V$ be a linear map and $\operatorname{dim}(V)<\infty$. Prove that if $\operatorname{rank}\left(\mathcal{A}^{2}\right)=\operatorname{rank}(\mathcal{A})$, then $N(\mathcal{A}) \cap R(\mathcal{A})=\{0\}$.
9. Prove that if A and B are the change of coordinate matrices that change S-coordinates to T-coordinates and T-coordinates to R-coordinates, respectively, then $B A$ is the change of coordinate matrix that changes S-coordinates to R-coordinates.
$10\left(^{*}\right)$. Let V be a vector space of dimension n. Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{m}$ be linear maps $V \rightarrow V$ such that $\operatorname{rank}\left(\mathcal{A}_{i}^{2}\right)=\operatorname{rank}\left(\mathcal{A}_{i}\right)=1$ for all $i=1, \ldots, m$ and $\mathcal{A}_{i} \circ \mathcal{A}_{j}$ is the zero map for all $i \neq j$. Prove that $m \leq n$. (Hint: Choose nonzero vectors $v_{i} \in R\left(\mathcal{A}_{i}\right)$ for all $i=1, \ldots, m$ and show that $\mathcal{A}_{i}\left(v_{i}\right)=$ $a_{i} v_{i}$ for some nonzero a_{i} and $\mathcal{A}_{i}\left(v_{j}\right)=0$ for all $i \neq j$. Prove that the set $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent.)

