HOMEWORK 3

1. Let $\mathcal{A}: P_{n}(\mathbb{R}) \rightarrow P_{n}(\mathbb{R})$ be the map defined by $\mathcal{A}(f)=2 f+x \cdot f^{\prime}$. Is \mathcal{A} linear?
2. Give an example of a linear map $\mathcal{A}: P_{4}(\mathbb{R}) \rightarrow P_{4}(\mathbb{R})$ such that $N(\mathcal{A})=$ $P_{1}(\mathbb{R})$ and $R(\mathcal{A})=P_{2}(\mathbb{R})$.
3. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a linearly independent set in a finite dimensional vector space V and let $w_{1}, w_{2}, \ldots, w_{n}$ be arbitrary vectors in a vector space W. Prove that there is a linear map $\mathcal{A}: V \rightarrow W$ such that $\mathcal{A}\left(v_{i}\right)=w_{i}$ for all $i=1,2, \ldots, n$.
4. Let V and W be finite dimensional vector spaces over F and $V^{\prime} \subset V$, $W^{\prime} \subset W$ two subspaces. Prove that if $\operatorname{dim}\left(V^{\prime}\right)+\operatorname{dim}\left(W^{\prime}\right)=\operatorname{dim}(V)$, then there is a linear map $\mathcal{A}: V \rightarrow W$ such that $N(\mathcal{A})=V^{\prime}$ and $R(\mathcal{A})=W^{\prime}$.
5. Find an isomorphism between $M_{3 \times 2}(F)$ and $P_{5}(F)$.
6. Let V be a finite dimensional vector space over F with basis S and let $v \in V$. Find a linear map $\mathcal{A}: F \rightarrow V$ such that $[\mathcal{A}]_{T}^{S}=[v]_{S}$, where $T=\{1\}$ is the basis for F.
7. Let $\mathcal{A}: M_{2 \times 2}(F) \rightarrow M_{2 \times 2}(F)$ be the map defined by $\mathcal{A}(A)=A+A^{t}$, where A^{t} is the transpose of A. Compute $[\mathcal{A}]_{S}^{S}$, where S is the basis

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

8. Let V and W be finite dimensional vector spaces over F and $W^{\prime} \subset W$ a subspace. Show that the subset of $\mathcal{L}(V, W)$ consisting of all linear maps $\mathcal{A}: V \rightarrow W$ such that $R(\mathcal{A}) \subset W^{\prime}$ is a subspace of $\mathcal{L}(V, W)$.
9. Let V and W be finite dimensional vector spaces with $\operatorname{dim}(V)=\operatorname{dim}(W)$ and let $\mathcal{A}: V \rightarrow W$ be a linear map. Prove that there are bases S of V and T of W such that the matrix $[\mathcal{A}]_{S}^{T}$ is diagonal.
10. (*) Let V be a finite dimensional vector space and let $\mathcal{A}: V \rightarrow V$ be a linear map such that $\mathcal{A} \circ \mathcal{A}=\mathcal{A}$. Prove that there is a basis S of V such that

$$
[\mathcal{A}]_{S}^{S}=\left(\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right)
$$

for some k, where I_{k} and 0 are the identity and zero matrices respectively.

