HOMEWORK 2

1. Determine whether the subset $\{(1,2), (2,1)\}$ is basis for \mathbb{R}^2 .

2. The vectors $u_1 = (2, -3, 1)$, $u_2 = (1, 4, -2)$, $u_3 = (-8, 12, -4)$, $u_4 = (1, 37, -17)$, $u_5 = (-3, -5, 8)$ generate \mathbb{R}^3 . Find a subset of the set $\{u_1, u_2, u_3, u_4, u_5\}$ that is a basis for \mathbb{R}^3 .

3. Let $\{u, v\}$ be a basis for V. Show that $\{2u + 3v, u + 2v\}$ is also basis.

4. Let W_1 and W_2 be two subspaces of a vector space V. Show that $\dim(W_1 \cap W_2) = \dim(W_1)$ if and only if $W_1 \subset W_2$.

5. Find the dimension of the spaces $Sym_{n \times n}(\mathbb{R})$ and $Skew_{n \times n}(\mathbb{R})$ of symmetric and skew-symmetric $n \times n$ matrices respectively.

6. Prove that the subset of F^n consisting of all vectors (a_1, a_2, \ldots, a_n) such that $a_1 + a_2 + \ldots + a_n = 0$ is a subspace of F^n and find its dimension.

7. Prove that the subset of $P_n(F)$ consisting of all polynomials f such that f(1) = 0 is a subspace of $P_n(F)$ and find its dimension.

8. Let V be a finite dimensional vector space and $S \subset V$ a subset (possibly infinite) with span(S) = V. Prove that some subset of S is a basis for V.

9. Let W_1 and W_2 be finite dimensional subspaces of a vector space V. Prove that the subspaces $W_1 \cap W_2$ and $W_1 + W_2$ are also finite dimensional and

 $\dim(W_1 \cap W_2) + \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2).$

10. (*) Let V be a vector space of dimension n and let $V_1, V_2, \ldots, V_k \subset V$ be subspaces of V. Assume that

$$\sum_{i=1}^{\kappa} \dim(V_i) > n(k-1).$$

L

Prove that $\bigcap_{i=1}^{k} V_i \neq \{0\}.$