HOMEWORK 2

1. Determine whether the subset $\{(1,2),(2,1)\}$ is basis for \mathbb{R}^{2}.
2. The vectors $u_{1}=(2,-3,1), u_{2}=(1,4,-2), u_{3}=(-8,12,-4), u_{4}=$ $(1,37,-17), u_{5}=(-3,-5,8)$ generate \mathbb{R}^{3}. Find a subset of the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ that is a basis for \mathbb{R}^{3}.
3. Let $\{u, v\}$ be a basis for V. Show that $\{2 u+3 v, u+2 v\}$ is also basis.
4. Let W_{1} and W_{2} be two subspaces of a vector space V. Show that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$ if and only if $W_{1} \subset W_{2}$.
5. Find the dimension of the spaces $\operatorname{Sym}_{n \times n}(\mathbb{R})$ and $\operatorname{Skew}_{n \times n}(\mathbb{R})$ of symmetric and skew-symmetric $n \times n$ matrices respectively.
6. Prove that the subset of F^{n} consisting of all vectors $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $a_{1}+a_{2}+\ldots+a_{n}=0$ is a subspace of F^{n} and find its dimension.
7. Prove that the subset of $P_{n}(F)$ consisting of all polynomials f such that $f(1)=0$ is a subspace of $P_{n}(F)$ and find its dimension.
8. Let V be a finite dimensional vector space and $S \subset V$ a subset (possibly infinite) with $\operatorname{span}(S)=V$. Prove that some subset of S is a basis for V.
9. Let W_{1} and W_{2} be finite dimensional subspaces of a vector space V. Prove that the subspaces $W_{1} \cap W_{2}$ and $W_{1}+W_{2}$ are also finite dimensional and

$$
\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right) .
$$

10. (*) Let V be a vector space of dimension n and let $V_{1}, V_{2}, \ldots, V_{k} \subset V$ be subspaces of V. Assume that

$$
\sum_{i=1}^{k} \operatorname{dim}\left(V_{i}\right)>n(k-1) .
$$

Prove that $\bigcap_{i=1}^{k} V_{i} \neq\{0\}$.

