HOMEWORK 1

1. In every vector space V over a field F, show that $(a-b)(x-y)=a x-a y-b x+b y$ for all $x, y \in V$ and $a, b \in F$.
2. Let $V=F^{2}$ for F a field. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in F$, define $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+2 b_{1}, a_{2}+3 b_{2}\right)$ and $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right)$. Is V a vector space over F with respect to these operations?
3. Let $C^{1}(\mathbb{R})$ be the set of all real-valued functions defined on the real line that have continuous derivative. Prove that $C^{1}(\mathbb{R})$ is a subspace of the space of real-valued functions defined on the real line.
4. Let W_{1} and W_{2} be two subspaces of a vector space V. Show that $W_{1}+W_{2}$ is the intersection of all subspaces of V that contain W_{1} and W_{2}.
5. A matrix $M \in M_{n \times n}(\mathbb{R})$ is called symmetric (respectively, skew-symmetric) if $M^{t}=M$ (respectively, $M^{t}=-M$).
a) Prove that the sets $\operatorname{Sym}_{n \times n}(\mathbb{R})$ and $\operatorname{Skew}_{n \times n}(\mathbb{R})$ of all symmetric and skewsymmetric matrices in $M_{n \times n}(\mathbb{R})$ respectively are subspaces of $M_{n \times n}(\mathbb{R})$.
b) Show that $\operatorname{Sym}_{n \times n}(\mathbb{R})+\operatorname{Skew}_{n \times n}(\mathbb{R})=M_{n \times n}(\mathbb{R})$.
6. Show that a subset S of a vector space V is a subspace of V if and only if $\operatorname{span}(S)=S$.
7. Prove or disprove the following: For any two subsets S and S^{\prime} of a vector space V one has $\operatorname{span}(\mathrm{S}) \cap \operatorname{span}\left(\mathrm{S}^{\prime}\right)=\operatorname{span}\left(\mathrm{S} \cap \mathrm{S}^{\prime}\right)$ and $\operatorname{span}(\mathrm{S})+\operatorname{span}\left(\mathrm{S}^{\prime}\right)=$ $\operatorname{span}\left(S \cup S^{\prime}\right)$.
8. Let u and v be distinct vectors in a vector space V. Show that $\{u, v\}$ is linearly dependent if and only if u or v is a multiple of the other.
9. Prove that a nonempty subset S of a vector space V is linearly dependent if and only if there exist distinct vectors $v, u_{1}, u_{2}, \ldots, u_{n}$ in S such that v is a linear combination of $u_{1}, u_{2}, \ldots, u_{n}$.
10. (*) Let S be a nonempty linearly independent subset of a vector space V. Prove that for any nonzero vector $v \in V$, there is a vector $x \in S$ such that the set $(S \backslash\{x\}) \cup\{v\}$ is linearly independent.
