HOMEWORK 8

1. Determine the Galois group of the polynomial $X^{4}+1$ over \mathbb{Q}.
2. Determine the Galois group of the polynomial $X^{4}+4$ over \mathbb{Q}.
3. Let p be a prime integer, F a field, $a \in F^{\times}$. Suppose that the polynomial $X^{p}-1$ is split over F. Prove that the polynomial $X^{p}-a$ is either split over F or irreducible.
4. Let $F(\alpha) / F$ be a field extension of prime degree p. Suppose that the minimal polynomial f of α over F has at least two roots in $F(\alpha)$. Prove that f is split over $F(\alpha)$.
5. Determine the Galois group of $\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{14}, \sqrt{15}, \sqrt{21}, \sqrt{35}) / \mathbb{Q}$.
6. Let K / F be a field extension of prime degree p and L / F a normal closure of K / F. Prove that $[L: K$] is not divisible by p.
7. Let f and g be nonconstant polynomials over a field F. Prove that $\operatorname{Gal}(f g)$ is isomorphic to a subgroup of $\operatorname{Gal}(f) \times \operatorname{Gal}(g)$.
8. Let f be a polynomial solvable by radicals. Show that the polynomial $g(X)=f\left(X^{2}\right)$ is also solvable by radicals.
9. Prove that there is a cyclic field extension of \mathbb{Q} of degree 1000 .
10. Determine all prime integers p such that the congruence class [3] is a square in $\mathbb{Z} / p \mathbb{Z}$.
