HOMEWORK 7

1. Let E be a subfield in $F(X)$ properly containing F. Show that $F(X)$ is algebraic over E.
2. Prove that any automorphism of \mathbb{R} is the identity. (Hint: Show that for any $\sigma \in \operatorname{Gal}(\mathbb{R} / \mathbb{Q}), \sigma(a) \geq a, a \in \mathbb{R}$.)
3. Let K / F be a Galois extension, $G=\operatorname{Gal}(K / F)$. Prove that for every $\alpha, \beta \in K$ that have the same minimal polynomial over F there is $\sigma \in G$ such that $\sigma(\alpha)=\beta$.
4. Show that the fields $Q(\sqrt{2}, \sqrt{3})$ and $Q(\sqrt{2}, \sqrt{5})$ are not isomorphic.
5. Let $K=\mathbb{Q}(\alpha)$ with α a root of $X^{3}+X^{2}-2 X-1 \in \mathbb{Q}[X]$. Show that K / \mathbb{Q} is normal.
6. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \alpha)$ where $\alpha^{2}=(9-5 \sqrt{3})(2-\sqrt{2})$. Show that K / \mathbb{Q} is normal and determine $\operatorname{Gal}(K / \mathbb{Q})$.
7. Suppose that K / F is Galois. Let $F \subset E \subset K$ and L the smallest subfield of K containing E and such that L / F is normal. Prove that

$$
\operatorname{Gal}(K / L)=\bigcap_{\sigma \in \operatorname{Gal}(K / F)} \sigma \operatorname{Gal}(K / E) \sigma^{-1}
$$

8. Let K / F be an extension of finite fields.
a) Prove that the norm map $N: K \rightarrow F$ is surjective.
b) Let F be a finite field. Prove that any element in F is a sum of two squares.
9. Let $X^{3}+p X+q$ be an irreducible polynomial over a finite field F of characteristic 3. Show that $-p$ is a square in F.
10. Let K be a subfield of \mathbb{R}, f an irreducible polynomial over K of degree 4 . Suppose that f has exactly two real roots. Show that the Galois group of f is either S_{4} or of order 8 .
