HOMEWORK 7

1. Let E be a subfield in F(X) properly containing F. Show that F(X) is algebraic over E.

2. Prove that any automorphism of \mathbb{R} is the identity. (Hint: Show that for any $\sigma \in Gal(\mathbb{R}/\mathbb{Q}), \sigma(a) \geq a, a \in \mathbb{R}$.)

3. Let K/F be a Galois extension, G = Gal(K/F). Prove that for every $\alpha, \beta \in K$ that have the same minimal polynomial over F there is $\sigma \in G$ such that $\sigma(\alpha) = \beta$.

4. Show that the fields $Q(\sqrt{2},\sqrt{3})$ and $Q(\sqrt{2},\sqrt{5})$ are not isomorphic.

5. Let $K = \mathbb{Q}(\alpha)$ with α a root of $X^3 + X^2 - 2X - 1 \in \mathbb{Q}[X]$. Show that K/\mathbb{Q} is normal.

6. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \alpha)$ where $\alpha^2 = (9 - 5\sqrt{3})(2 - \sqrt{2})$. Show that K/\mathbb{Q} is normal and determine $Gal(K/\mathbb{Q})$.

7. Suppose that K/F is Galois. Let $F \subset E \subset K$ and L the smallest subfield of K containing E and such that L/F is normal. Prove that

$$Gal(K/L) = \bigcap_{\sigma \in Gal(K/F)} \sigma Gal(K/E) \sigma^{-1}.$$

8. Let K/F be an extension of finite fields.

a) Prove that the norm map $N: K \to F$ is surjective.

b) Let F be a finite field. Prove that any element in F is a sum of two squares.

9. Let $X^3 + pX + q$ be an irreducible polynomial over a finite field F of characteristic 3. Show that -p is a square in F.

10. Let K be a subfield of \mathbb{R} , f an irreducible polynomial over K of degree 4. Suppose that f has exactly two real roots. Show that the Galois group of f is either S_4 or of order 8.